Free energy, free entropy, and a gradient structure for thermoplasticity

dc.bibliographicCitation.volume2091
dc.contributor.authorMielke, Alexander
dc.date.accessioned2016-03-24T17:37:04Z
dc.date.available2019-06-28T08:13:18Z
dc.date.issued2015
dc.description.abstractIn the modeling of solids the free energy, the energy, and the entropy play a central role. We show that the free entropy, which is defined as the negative of the free energy divided by the temperature, is similarly important. The derivatives of the free energy are suitable thermodynamical driving forces for reversible (i.e. Hamiltonian) parts of the dynamics, while for the dissipative parts the derivatives of the free entropy are the correct driving forces. This difference does not matter for isothermal cases nor for local materials, but it is relevant in the non-isothermal case if the densities also depend on gradients, as is the case in gradient thermoplasticity. Using the total entropy as a driving functional, we develop gradient structures for quasistatic thermoplasticity, which again features the role of the free entropy. The big advantage of the gradient structure is the possibility of deriving time-incremental minimization procedures, where the entropy-production potential minus the total entropy is minimized with respect to the internal variables and the temperature. We also highlight that the usage of an auxiliary temperature as an integrating factor in Yang/Stainier/Ortiz "A variational formulation of the coupled thermomechanical boundary-value problem for general dissipative solids" (J. Mech. Physics Solids, 54, 401-424, 2006) serves exactly the purpose to transform the reversible driving forces, obtained from the free energy, into the needed irreversible driving forces, which should have been derived from the free entropy. This reconfirms the fact that only the usage of the free entropy as driving functional for dissipative processes allows us to derive a proper variational formulation.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/2380
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2920
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.ispartofseriesPreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik, Volume 2091, ISSN 2198-5855eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subjectGeneralized gradient systemseng
dc.subjectGENERICeng
dc.subjectvariational formulationseng
dc.subjectincremental minimizationeng
dc.subjectentropy as driving functionaleng
dc.subjectprimal and dualeng
dc.subjectentropy-production potentialeng
dc.subjectthermodynamic modelingeng
dc.subjectviscoplasticityeng
dc.subject.ddc510eng
dc.titleFree energy, free entropy, and a gradient structure for thermoplasticityeng
dc.typereporteng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitlePreprint / Weierstraß-Institut für Angewandte Analysis und Stochastikeng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
844426431.pdf
Size:
525.99 KB
Format:
Adobe Portable Document Format
Description:
Collections