Adaptive non-intrusive reconstruction of solutions to high-dimensional parametric PDEs
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2897 | |
dc.contributor.author | Eigel, Martin | |
dc.contributor.author | Farchmin, Nando | |
dc.contributor.author | Heidenreich, Sebastian | |
dc.contributor.author | Trunschke, Philipp | |
dc.date.accessioned | 2022-07-05T14:37:18Z | |
dc.date.available | 2022-07-05T14:37:18Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Numerical methods for random parametric PDEs can greatly benefit from adaptive refinement schemes, in particular when functional approximations are computed as in stochastic Galerkin and stochastic collocations methods. This work is concerned with a non-intrusive generalization of the adaptive Galerkin FEM with residual based error estimation. It combines the non-intrusive character of a randomized least-squares method with the a posteriori error analysis of stochastic Galerkin methods. The proposed approach uses the Variational Monte Carlo method to obtain a quasi-optimal low-rank approximation of the Galerkin projection in a highly efficient hierarchical tensor format. We derive an adaptive refinement algorithm which is steered by a reliable error estimator. Opposite to stochastic Galerkin methods, the approach is easily applicable to a wide range of problems, enabling a fully automated adjustment of all discretization parameters. Benchmark examples with affine and (unbounded) lognormal coefficient fields illustrate the performance of the non-intrusive adaptive algorithm, showing best-in-class performance | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9615 | |
dc.identifier.uri | https://doi.org/10.34657/8653 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2897 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Uncertainty quantification | eng |
dc.subject.other | adaptivity | eng |
dc.subject.other | low-rank tensor regression | eng |
dc.subject.other | tensor train | eng |
dc.subject.other | parametric PDEs | eng |
dc.subject.other | residual error estimator | eng |
dc.subject.other | stochastic Galerkin FEM | eng |
dc.title | Adaptive non-intrusive reconstruction of solutions to high-dimensional parametric PDEs | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 25 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2897.pdf
- Size:
- 521.03 KB
- Format:
- Adobe Portable Document Format
- Description: