Adaptive non-intrusive reconstruction of solutions to high-dimensional parametric PDEs

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2897
dc.contributor.authorEigel, Martin
dc.contributor.authorFarchmin, Nando
dc.contributor.authorHeidenreich, Sebastian
dc.contributor.authorTrunschke, Philipp
dc.date.accessioned2022-07-05T14:37:18Z
dc.date.available2022-07-05T14:37:18Z
dc.date.issued2021
dc.description.abstractNumerical methods for random parametric PDEs can greatly benefit from adaptive refinement schemes, in particular when functional approximations are computed as in stochastic Galerkin and stochastic collocations methods. This work is concerned with a non-intrusive generalization of the adaptive Galerkin FEM with residual based error estimation. It combines the non-intrusive character of a randomized least-squares method with the a posteriori error analysis of stochastic Galerkin methods. The proposed approach uses the Variational Monte Carlo method to obtain a quasi-optimal low-rank approximation of the Galerkin projection in a highly efficient hierarchical tensor format. We derive an adaptive refinement algorithm which is steered by a reliable error estimator. Opposite to stochastic Galerkin methods, the approach is easily applicable to a wide range of problems, enabling a fully automated adjustment of all discretization parameters. Benchmark examples with affine and (unbounded) lognormal coefficient fields illustrate the performance of the non-intrusive adaptive algorithm, showing best-in-class performanceeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9615
dc.identifier.urihttps://doi.org/10.34657/8653
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2897
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherUncertainty quantificationeng
dc.subject.otheradaptivityeng
dc.subject.otherlow-rank tensor regressioneng
dc.subject.othertensor traineng
dc.subject.otherparametric PDEseng
dc.subject.otherresidual error estimatoreng
dc.subject.otherstochastic Galerkin FEMeng
dc.titleAdaptive non-intrusive reconstruction of solutions to high-dimensional parametric PDEseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent25 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2897.pdf
Size:
521.03 KB
Format:
Adobe Portable Document Format
Description: