Analysis of a bistable climate toy model with physics-based machine learning methods

dc.bibliographicCitation.firstPage3121eng
dc.bibliographicCitation.issue14-15eng
dc.bibliographicCitation.journalTitleEuropean physical journal special topicseng
dc.bibliographicCitation.lastPage3131eng
dc.bibliographicCitation.volume230eng
dc.contributor.authorGelbrecht, Maximilian
dc.contributor.authorLucarini, Valerio
dc.contributor.authorBoers, Niklas
dc.contributor.authorKurths, Jürgen
dc.date.accessioned2022-01-31T08:37:49Z
dc.date.available2022-01-31T08:37:49Z
dc.date.issued2021
dc.description.abstractWe propose a comprehensive framework able to address both the predictability of the first and of the second kind for high-dimensional chaotic models. For this purpose, we analyse the properties of a newly introduced multistable climate toy model constructed by coupling the Lorenz ’96 model with a zero-dimensional energy balance model. First, the attractors of the system are identified with Monte Carlo Basin Bifurcation Analysis. Additionally, we are able to detect the Melancholia state separating the two attractors. Then, Neural Ordinary Differential Equations are applied to predict the future state of the system in both of the identified attractors.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7958
dc.identifier.urihttps://doi.org/10.34657/6999
dc.language.isoengeng
dc.publisherBerlin ; Heidelberg : Springereng
dc.relation.doihttps://doi.org/10.1140/epjs/s11734-021-00175-0
dc.relation.essn1951-6401
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherBasin Boundarieseng
dc.subject.otherResponse Theoryeng
dc.subject.otherSystemseng
dc.subject.otherStabilityeng
dc.subject.otherParametrizationseng
dc.subject.otherRepresentationeng
dc.subject.otherResilienceeng
dc.subject.otherAttractorseng
dc.subject.otherStateseng
dc.titleAnalysis of a bistable climate toy model with physics-based machine learning methodseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPIKeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Analysis of a bistable climate toy model with physics-based machine learning methods.pdf
Size:
980.96 KB
Format:
Adobe Portable Document Format
Description:
Collections