Possible experimental realization of a basic Z 2 topological semimetal in GaGeTe

dc.bibliographicCitation.firstPage121106eng
dc.bibliographicCitation.issue12eng
dc.bibliographicCitation.lastPage10669eng
dc.bibliographicCitation.volume7eng
dc.contributor.authorHaubold, E.
dc.contributor.authorFedorov, A.
dc.contributor.authorPielnhofer, F.
dc.contributor.authorRusinov, I.P.
dc.contributor.authorMenshchikova, T.V.
dc.contributor.authorDuppel, V.
dc.contributor.authorFriedrich, D.
dc.contributor.authorWeihrich, R.
dc.contributor.authorPfitzner, A.
dc.contributor.authorZeugner, A.
dc.contributor.authorIsaeva, A.
dc.contributor.authorThirupathaiah, S.
dc.contributor.authorKushnirenko, Y.
dc.contributor.authorRienks, E.
dc.contributor.authorKim, T.
dc.contributor.authorChulkov, E.V.
dc.contributor.authorBüchner, B.
dc.contributor.authorBorisenko, S.
dc.date.accessioned2020-07-18T06:12:35Z
dc.date.available2020-07-18T06:12:35Z
dc.date.issued2019
dc.description.abstractWe report experimental and theoretical evidence that GaGeTe is a basic Z2 topological semimetal with three types of charge carriers: bulk-originated electrons and holes as well as surface state electrons. This electronic situation is qualitatively similar to the classic 3D topological insulator Bi2Se3, but important differences account for an unprecedented transport scenario in GaGeTe. High-resolution angle-resolved photoemission spectroscopy combined with advanced band structure calculations show a small indirect energy gap caused by a peculiar band inversion at the T-point of the Brillouin zone in GaGeTe. An energy overlap of the valence and conduction bands brings both electron and holelike carriers to the Fermi level, while the momentum gap between the corresponding dispersions remains finite. We argue that peculiarities of the electronic spectrum of GaGeTe have a fundamental importance for the physics of topological matter and may boost the material's application potential.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3595
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4966
dc.language.isoengeng
dc.publisherCollege Park, MD : American Institute of Physicseng
dc.relation.doihttps://doi.org/10.1063/1.5124563
dc.relation.ispartofseriesAPL Materials 7 (2019), 12eng
dc.relation.issn2166-532X
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectGallium compoundseng
dc.subjectPhotoelectron spectroscopyeng
dc.subjectTellurium compoundseng
dc.subjectTopological insulatorseng
dc.subjectTopologyeng
dc.subjectBand structure calculationeng
dc.subjectBrillouin zoneseng
dc.subjectElectronic spectrumeng
dc.subjectElectrons and holeseng
dc.subjectExperimental realizationseng
dc.subjectHigh-resolution angle-resolved photoemission spectroscopieseng
dc.subjectHolelike carrierseng
dc.subjectSurface-state electronseng
dc.subjectGermanium compoundseng
dc.subject.ddc530eng
dc.titlePossible experimental realization of a basic Z 2 topological semimetal in GaGeTeeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAPL Materialseng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Haubold et al 2019, Possible experimental realization of a basic.pdf
Size:
7.23 MB
Format:
Adobe Portable Document Format
Description:
Collections