Doob-Meyer for rough paths
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Recently, Hairer–Pillai proposed the notion of θ-roughness of a path which leads to a deterministic Norris lemma. In the Gubinelli framework (H¨older, level 2) of rough paths, they were then able to prove a Hörmander type result (SDEs driven by fractional Brownian motion, H > 1/3). We take a step back and propose a natural ”roughness” condition relative to a given p-rough path in the sense of Lyons; the aim being a Doob-Meyer result for rough integrals in the sense of Lyons. The interest in our (weaker) condition is that it is immediately verified for large classes of Gaussian processes, also in infinite dimensions. We conclude with an application to non-Markovian system under Hörmander’s condition.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.