Doob-Meyer for rough paths

dc.contributor.authorFriz, Peter
dc.date.accessioned2016-06-25T05:45:14Z
dc.date.available2019-06-28T08:18:21Z
dc.date.issued2012
dc.description.abstractRecently, Hairer–Pillai proposed the notion of θ-roughness of a path which leads to a deterministic Norris lemma. In the Gubinelli framework (H¨older, level 2) of rough paths, they were then able to prove a Hörmander type result (SDEs driven by fractional Brownian motion, H > 1/3). We take a step back and propose a natural ”roughness” condition relative to a given p-rough path in the sense of Lyons; the aim being a Doob-Meyer result for rough integrals in the sense of Lyons. The interest in our (weaker) condition is that it is immediately verified for large classes of Gaussian processes, also in infinite dimensions. We conclude with an application to non-Markovian system under Hörmander’s condition.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3170
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/pdf/1205.2505v1
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleDoob-Meyer for rough pathseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections