This item is non-discoverable
Doob-Meyer for rough paths
dc.contributor.author | Friz, Peter | |
dc.date.accessioned | 2016-06-25T05:45:14Z | |
dc.date.available | 2019-06-28T08:18:21Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Recently, Hairer–Pillai proposed the notion of θ-roughness of a path which leads to a deterministic Norris lemma. In the Gubinelli framework (H¨older, level 2) of rough paths, they were then able to prove a Hörmander type result (SDEs driven by fractional Brownian motion, H > 1/3). We take a step back and propose a natural ”roughness” condition relative to a given p-rough path in the sense of Lyons; the aim being a Doob-Meyer result for rough integrals in the sense of Lyons. The interest in our (weaker) condition is that it is immediately verified for large classes of Gaussian processes, also in infinite dimensions. We conclude with an application to non-Markovian system under Hörmander’s condition. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/3170 | |
dc.language.iso | eng | eng |
dc.publisher | Cambridge : arXiv | eng |
dc.relation.uri | http://arxiv.org/pdf/1205.2505v1 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.title | Doob-Meyer for rough paths | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |