Basin stability and limit cycles in a conceptual model for climate tipping cascades

dc.bibliographicCitation.firstPage123031eng
dc.bibliographicCitation.issue12eng
dc.bibliographicCitation.journalTitleNew journal of physics : the open-access journal for physicseng
dc.bibliographicCitation.volume22eng
dc.contributor.authorWunderling, Nico
dc.contributor.authorGelbrecht, Maximilian
dc.contributor.authorWinkelmann, Ricarda
dc.contributor.authorKurths, Jürgen
dc.contributor.authorDonges, Jonathan F.
dc.date.accessioned2022-03-30T11:35:40Z
dc.date.available2022-03-30T11:35:40Z
dc.date.issued2020
dc.description.abstractTipping elements in the climate system are large-scale subregions of the Earth that might possess threshold behavior under global warming with large potential impacts on human societies. Here, we study a subset of five tipping elements and their interactions in a conceptual and easily extendable framework: the Greenland Ice Sheets (GIS) and West Antarctic Ice Sheets, the Atlantic meridional overturning circulation (AMOC), the El–Niño Southern Oscillation and the Amazon rainforest. In this nonlinear and multistable system, we perform a basin stability analysis to detect its stable states and their associated Earth system resilience. By combining these two methodologies with a large-scale Monte Carlo approach, we are able to propagate the many uncertainties associated with the critical temperature thresholds and the interaction strengths of the tipping elements. Using this approach, we perform a system-wide and comprehensive robustness analysis with more than 3.5 billion ensemble members. Further, we investigate dynamic regimes where some of the states lose stability and oscillations appear using a newly developed basin bifurcation analysis methodology. Our results reveal that the state of four or five tipped elements has the largest basin volume for large levels of global warming beyond 4 °C above pre-industrial climate conditions, representing a highly undesired state where a majority of the tipping elements reside in the transitioned regime. For lower levels of warming, states including disintegrated ice sheets on west Antarctica and Greenland have higher basin volume than other state configurations. Therefore in our model, we find that the large ice sheets are of particular importance for Earth system resilience. We also detect the emergence of limit cycles for 0.6% of all ensemble members at rare parameter combinations. Such limit cycle oscillations mainly occur between the GIS and AMOC (86%), due to their negative feedback coupling. These limit cycles point to possibly dangerous internal modes of variability in the climate system that could have played a role in paleoclimatic dynamics such as those unfolding during the Pleistocene ice age cycles.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8474
dc.identifier.urihttps://doi.org/10.34657/7512
dc.language.isoengeng
dc.publisher[London] : IOPeng
dc.relation.doihttps://doi.org/10.1088/1367-2630/abc98a
dc.relation.essn1367-2630
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherBasin stabilityeng
dc.subject.otherBifurcationeng
dc.subject.otherClimate tipping elementseng
dc.subject.otherComplex systemseng
dc.subject.otherNonlinear dynamicseng
dc.subject.otherNonlinear processes in the eartheng
dc.titleBasin stability and limit cycles in a conceptual model for climate tipping cascadeseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPIKeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Basin_stability_and_limit_cycles.pdf
Size:
11.78 MB
Format:
Adobe Portable Document Format
Description:
Collections