Relating a rate-independent system and a gradient system for the case of one-homogeneous potentials

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2771
dc.contributor.authorMielke, Alexander
dc.date.accessioned2022-06-30T13:14:20Z
dc.date.available2022-06-30T13:14:20Z
dc.date.issued2020
dc.description.abstractWe consider a non-negative and one-homogeneous energy functional $mathcal J$ on a Hilbert space. The paper provides an exact relation between the solutions of the associated gradient-flow equations and the energetic solutions generated via the rate-inpendent system given in terms of the time-dependent functional $mathcal E(t,u)=t mathcal J(u)$ and the norm as a dissipation distance. The relation between the two flows is given via a solution-dependent reparametrization of time that can be guessed from the homogeneities of energy and dissipations in the two equations. We provide several examples including the total-variation flow and show that equivalence of the two systems through a solution dependent reparametrization of the time. Making the relation mathematically rigorous includes a careful analysis of the jumps in energetic solutions which correspond to constant-speed intervals for the solutins of the gradient-flow equation. As a major result we obtain a non-trivial existence and uniqueness result for the energetic rate-independent system.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9421
dc.identifier.urihttps://doi.org/10.34657/8459
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2771
dc.relation.hasversionhttps://doi.org/10.1007/s10884-021-10007-3
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherGradient flow energetic solutionseng
dc.subject.otherrate-independent systemeng
dc.subject.othercontraction semigroupeng
dc.subject.otherset of stable stateseng
dc.subject.othertime parametrizationeng
dc.titleRelating a rate-independent system and a gradient system for the case of one-homogeneous potentialseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent22 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2771.pdf
Size:
356.75 KB
Format:
Adobe Portable Document Format
Description: