Scenario reduction in stochastic programming with respect to discrepancy distances
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Discrete approximations to chance constraints and mixed-integertwo-stage stochastic programs require moderately sized scenario sets. The relevant distances of (multivariate) probability distributions for deriving quantitative stability results for such stochastic programs are B-discrepancies, where the class B of Borel sets depends on their structural properties. Hence, the optimal scenario reduction problem for such models is stated with respect to B-discrepancies. In this paper, upper and lower bounds, and some explicit solutions for optimal scenario reduction problems are derived. In addition, we develop heuristic algorithms for determining nearly optimally reduced probability measures, discuss the case of the cell discrepancy (or Kolmogorov metric) in some detail and provide some numerical experience.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.