Convergence bounds for empirical nonlinear least-squares

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2714
dc.contributor.authorEigel, Martin
dc.contributor.authorTrunschke, Philipp
dc.contributor.authorSchneider, Reinhold
dc.date.accessioned2022-06-30T12:54:13Z
dc.date.available2022-06-30T12:54:13Z
dc.date.issued2020
dc.description.abstractWe consider best approximation problems in a nonlinear subset of a Banach space of functions. The norm is assumed to be a generalization of the L2 norm for which only a weighted Monte Carlo estimate can be computed. The objective is to obtain an approximation of an unknown target function by minimizing the empirical norm. In the case of linear subspaces it is well-known that such least squares approximations can become inaccurate and unstable when the number of samples is too close to the number of parameters. We review this statement for general nonlinear subsets and establish error bounds for the empirical best approximation error. Our results are based on a restricted isometry property (RIP) which holds in probability and we show sufficient conditions for the RIP to be satisfied with high probability. Several model classes are examined where analytical statements can be made about the RIP. Numerical experiments illustrate some of the obtained stability bounds.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9364
dc.identifier.urihttps://doi.org/10.34657/8402
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2714
dc.relation.hasversionhttps://doi.org/10.1051/m2an/2021070
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherMultivariate approximationeng
dc.subject.otherrestricted isometry propertyeng
dc.subject.otherweighted least squareseng
dc.subject.othertensor representationeng
dc.subject.otherconvergence rateseng
dc.subject.othererror analysiseng
dc.subject.othernonlinear approximationeng
dc.subject.otherconditional samplingeng
dc.titleConvergence bounds for empirical nonlinear least-squareseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent26 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2714.pdf
Size:
4.65 MB
Format:
Adobe Portable Document Format
Description: