Dissipation losses limiting first-order phase transition materials in cryogenic caloric cooling: A case study on all-d-metal Ni(-Co)-Mn-Ti Heusler alloys

dc.bibliographicCitation.firstPage118695
dc.bibliographicCitation.volume246
dc.contributor.authorBeckmann, Benedikt
dc.contributor.authorKoch, David
dc.contributor.authorPfeuffer, Lukas
dc.contributor.authorGottschall, Tino
dc.contributor.authorTaubel, Andreas
dc.contributor.authorAdabifiroozjaei, Esmaeil
dc.contributor.authorMiroshkina, Olga N.
dc.contributor.authorRiegg, Stefan
dc.contributor.authorNiehoff, Timo
dc.contributor.authorKani, Nagaarjhuna A.
dc.contributor.authorGruner, Markus E.
dc.contributor.authorMolina-Luna, Leopoldo
dc.contributor.authorSkokov, Konstantin P.
dc.contributor.authorGutfleisch, Oliver
dc.date.accessioned2023-06-02T15:02:03Z
dc.date.available2023-06-02T15:02:03Z
dc.date.issued2023
dc.description.abstractNi-Mn-based Heusler alloys, in particular all-d-metal Ni(-Co)-Mn-Ti, are highly promising materials for energy-efficient solid-state refrigeration as large multicaloric effects can be achieved across their magnetostructural martensitic transformation. However, no comprehensive study on the crucially important transition entropy change Δst exists so far for Ni(-Co)-Mn-Ti. Here, we present a systematic study analyzing the composition and temperature dependence of Δst. Our results reveal a substantial structural entropy change contribution of approximately 65 J(kgK)-1, which is compensated at lower temperatures by an increasingly negative entropy change associated with the magnetic subsystem. This leads to compensation temperatures Tcomp of 75 K and 300 K in Ni35Co15Mn50-yTiy and Ni33Co17Mn50-yTiy, respectively, below which the martensitic transformations are arrested. In addition, we simultaneously measured the responses of the magnetic, structural and electronic subsystems to the temperature- and field-induced martensitic transformation near Tcomp, showing an abnormal increase of hysteresis and consequently dissipation energy at cryogenic temperatures. Simultaneous measurements of magnetization and adiabatic temperature change ΔTad in pulsed magnetic fields reveal a change in sign of ΔTad and a substantial positive and irreversible ΔTad up to 15 K at 15 K as a consequence of increased dissipation losses and decreased heat capacity. Most importantly, this phenomenon is universal, it applies to any first-order material with non-negligible hysteresis and any stimulus, effectively limiting the utilization of their caloric effects for gas liquefaction at cryogenic temperatures.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/12307
dc.identifier.urihttp://dx.doi.org/10.34657/11339
dc.language.isoeng
dc.publisherAmsterdam [u.a.] : Elsevier Science
dc.relation.doihttps://doi.org/10.1016/j.actamat.2023.118695
dc.relation.essn1359-6454
dc.relation.ispartofseriesActa Materialia 246 (2023)eng
dc.rights.licenseCC BY-NC-ND 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectHeusler alloyseng
dc.subjectHydrogeneng
dc.subjectMagnetostructural transformationeng
dc.subjectMartensitic transformationeng
dc.subjectSolid-state caloric coolingeng
dc.subject.ddc670
dc.titleDissipation losses limiting first-order phase transition materials in cryogenic caloric cooling: A case study on all-d-metal Ni(-Co)-Mn-Ti Heusler alloyseng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleActa Materialia
tib.accessRightsopenAccess
wgl.contributorIFWD
wgl.subjectIngenieurwissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
53Dissipation-losses-limiting.pdf
Size:
2.73 MB
Format:
Adobe Portable Document Format
Description: