Polyacrylonitrile-containing amphiphilic block copolymers: self-assembly and porous membrane formation

dc.bibliographicCitation.firstPage4825
dc.bibliographicCitation.issue42
dc.bibliographicCitation.lastPage4837
dc.bibliographicCitation.volume14
dc.contributor.authorGemmer, Lea
dc.contributor.authorNiebuur, Bart-Jan
dc.contributor.authorDietz, Christian
dc.contributor.authorRauber, Daniel
dc.contributor.authorPlank, Martina
dc.contributor.authorFrieß, Florian V.
dc.contributor.authorPresser, Volker
dc.contributor.authorStark, Robert W.
dc.contributor.authorKraus, Tobias
dc.contributor.authorGallei, Markus
dc.date.accessioned2024-07-02T07:17:04Z
dc.date.available2024-07-02T07:17:04Z
dc.date.issued2023
dc.description.abstractThe development of hierarchically porous block copolymer (BCP) membranes via the application of the self-assembly and non-solvent induced phase separation (SNIPS) process is one important achievement in BCP science in the last decades. In this work, we present the synthesis of polyacrylonitrile-containing amphiphilic BCPs and their unique microphase separation capability, as well as their applicability for the SNIPS process leading to isoporous integral asymmetric membranes. Poly(styrene-co-acrylonitrile)-b-poly(2-hydroxyethyl methacrylate)s (PSAN-b-PHEMA) are synthesized via a two-step atom transfer radical polymerization (ATRP) procedure rendering PSAN copolymers and BCPs with overall molar masses of up to 82 kDa while maintaining low dispersity index values in the range of Đ = 1.13-1.25. The polymers are characterized using size-exclusion chromatography (SEC) and NMR spectroscopy. Self-assembly capabilities in the bulk state are examined using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) measurements. The fabrication of isoporous integral asymmetric membranes is investigated, and membranes are examined by scanning electron microscopy (SEM). The introduction of acrylonitrile moieties within the membrane matrix could improve the membranes’ mechanical properties, which was confirmed by nanomechanical analysis using atomic force microscopy (AFM).eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/14759
dc.identifier.urihttps://doi.org/10.34657/13781
dc.language.isoeng
dc.publisherCambridge : RSC Publ.
dc.relation.doihttps://doi.org/10.1039/d3py00836c
dc.relation.essn1759-9962
dc.relation.ispartofseriesPolymer Chemistry 14 (2023), Nr. 42
dc.relation.issn1759-9954
dc.rights.licenseCC BY 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0
dc.subjectAtom transfer radical polymerizationeng
dc.subjectBlock copolymerseng
dc.subjectHigh resolution transmission electron microscopyeng
dc.subjectMembraneseng
dc.subjectMicrophase separationeng
dc.subjectNuclear magnetic resonance spectroscopyeng
dc.subjectPhase separationeng
dc.subjectScanning electron microscopyeng
dc.subjectSize exclusion chromatographyeng
dc.subjectStyreneeng
dc.subjectX ray scatteringeng
dc.subjectAmphiphilic block copolymerseng
dc.subjectAsymmetric membraneseng
dc.subjectBlock copolymer self-assemblyeng
dc.subjectHierarchically porouseng
dc.subjectMembrane formationeng
dc.subjectPhase-separation processeng
dc.subjectPorous blockseng
dc.subjectPorous membraneseng
dc.subjectSelf-assembly membraneeng
dc.subjectSolvent-induced phase separationseng
dc.subjectSelf assemblyeng
dc.subject.ddc540
dc.titlePolyacrylonitrile-containing amphiphilic block copolymers: self-assembly and porous membrane formationeng
dc.typeArticle
dc.typeText
dcterms.bibliographicCitation.journalTitlePolymer Chemistry
tib.accessRightsopenAccess
wgl.contributorINM
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
d3py00836c.pdf
Size:
3.93 MB
Format:
Adobe Portable Document Format
Description:
Collections