Polyacrylonitrile-containing amphiphilic block copolymers: self-assembly and porous membrane formation
dc.bibliographicCitation.firstPage | 4825 | |
dc.bibliographicCitation.issue | 42 | |
dc.bibliographicCitation.lastPage | 4837 | |
dc.bibliographicCitation.volume | 14 | |
dc.contributor.author | Gemmer, Lea | |
dc.contributor.author | Niebuur, Bart-Jan | |
dc.contributor.author | Dietz, Christian | |
dc.contributor.author | Rauber, Daniel | |
dc.contributor.author | Plank, Martina | |
dc.contributor.author | Frieß, Florian V. | |
dc.contributor.author | Presser, Volker | |
dc.contributor.author | Stark, Robert W. | |
dc.contributor.author | Kraus, Tobias | |
dc.contributor.author | Gallei, Markus | |
dc.date.accessioned | 2024-07-02T07:17:04Z | |
dc.date.available | 2024-07-02T07:17:04Z | |
dc.date.issued | 2023 | |
dc.description.abstract | The development of hierarchically porous block copolymer (BCP) membranes via the application of the self-assembly and non-solvent induced phase separation (SNIPS) process is one important achievement in BCP science in the last decades. In this work, we present the synthesis of polyacrylonitrile-containing amphiphilic BCPs and their unique microphase separation capability, as well as their applicability for the SNIPS process leading to isoporous integral asymmetric membranes. Poly(styrene-co-acrylonitrile)-b-poly(2-hydroxyethyl methacrylate)s (PSAN-b-PHEMA) are synthesized via a two-step atom transfer radical polymerization (ATRP) procedure rendering PSAN copolymers and BCPs with overall molar masses of up to 82 kDa while maintaining low dispersity index values in the range of Đ = 1.13-1.25. The polymers are characterized using size-exclusion chromatography (SEC) and NMR spectroscopy. Self-assembly capabilities in the bulk state are examined using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) measurements. The fabrication of isoporous integral asymmetric membranes is investigated, and membranes are examined by scanning electron microscopy (SEM). The introduction of acrylonitrile moieties within the membrane matrix could improve the membranes’ mechanical properties, which was confirmed by nanomechanical analysis using atomic force microscopy (AFM). | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/14759 | |
dc.identifier.uri | https://doi.org/10.34657/13781 | |
dc.language.iso | eng | |
dc.publisher | Cambridge : RSC Publ. | |
dc.relation.doi | https://doi.org/10.1039/d3py00836c | |
dc.relation.essn | 1759-9962 | |
dc.relation.ispartofseries | Polymer Chemistry 14 (2023), Nr. 42 | |
dc.relation.issn | 1759-9954 | |
dc.rights.license | CC BY 3.0 Unported | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0 | |
dc.subject | Atom transfer radical polymerization | eng |
dc.subject | Block copolymers | eng |
dc.subject | High resolution transmission electron microscopy | eng |
dc.subject | Membranes | eng |
dc.subject | Microphase separation | eng |
dc.subject | Nuclear magnetic resonance spectroscopy | eng |
dc.subject | Phase separation | eng |
dc.subject | Scanning electron microscopy | eng |
dc.subject | Size exclusion chromatography | eng |
dc.subject | Styrene | eng |
dc.subject | X ray scattering | eng |
dc.subject | Amphiphilic block copolymers | eng |
dc.subject | Asymmetric membranes | eng |
dc.subject | Block copolymer self-assembly | eng |
dc.subject | Hierarchically porous | eng |
dc.subject | Membrane formation | eng |
dc.subject | Phase-separation process | eng |
dc.subject | Porous blocks | eng |
dc.subject | Porous membranes | eng |
dc.subject | Self-assembly membrane | eng |
dc.subject | Solvent-induced phase separations | eng |
dc.subject | Self assembly | eng |
dc.subject.ddc | 540 | |
dc.title | Polyacrylonitrile-containing amphiphilic block copolymers: self-assembly and porous membrane formation | eng |
dc.type | Article | |
dc.type | Text | |
dcterms.bibliographicCitation.journalTitle | Polymer Chemistry | |
tib.accessRights | openAccess | |
wgl.contributor | INM | |
wgl.subject | Chemie | ger |
wgl.type | Zeitschriftenartikel | ger |
Files
Original bundle
1 - 1 of 1