Mapping Nanoscale Absorption of Femtosecond Laser Pulses Using Plasma Explosion Imaging

dc.bibliographicCitation.firstPage8810
dc.bibliographicCitation.issue9
dc.bibliographicCitation.journalTitleACS Nano
dc.bibliographicCitation.lastPage8818
dc.bibliographicCitation.volume8
dc.contributor.authorHickstein, Daniel D.
dc.contributor.authorDollar, Franklin
dc.contributor.authorEllis, Jennifer L.
dc.contributor.authorSchnitzenbaumer, Kyle J.
dc.contributor.authorKeister, K. Ellen
dc.contributor.authorPetrov, George M.
dc.contributor.authorDing, Chengyuan
dc.contributor.authorPalm, Brett B.
dc.contributor.authorGaffney, Jim A.
dc.contributor.authorFoord, Mark E.
dc.contributor.authorLibby, Stephen B.
dc.contributor.authorDukovic, Gordana
dc.contributor.authorJimenez, Jose L.
dc.contributor.authorKapteyn, Henry C.
dc.contributor.authorMurnane, Margaret M.
dc.contributor.authorXiong, Wei
dc.date.accessioned2025-02-28T08:42:49Z
dc.date.available2025-02-28T08:42:49Z
dc.date.issued2014
dc.description.abstractWe make direct observations of localized light absorption in a single nanostructure irradiated by a strong femtosecond laser field, by developing and applying a technique that we refer to as plasma explosion imaging. By imaging the photoion momentum distribution resulting from plasma formation in a laser-irradiated nanostructure, we map the spatial location of the highly localized plasma and thereby image the nanoscale light absorption. Our method probes individual, isolated nanoparticles in vacuum, which allows us to observe how small variations in the composition, shape, and orientation of the nanostructures lead to vastly different light absorption. Here, we study four different nanoparticle samples with overall dimensions of ∼100 nm and find that each sample exhibits distinct light absorption mechanisms despite their similar size. Specifically, we observe subwavelength focusing in single NaCl crystals, symmetric absorption in TiO2 aggregates, surface enhancement in dielectric particles containing a single gold nanoparticle, and interparticle hot spots in dielectric particles containing multiple smaller gold nanoparticles. These observations demonstrate how plasma explosion imaging directly reveals the diverse ways in which nanoparticles respond to strong laser fields, a process that is notoriously challenging to model because of the rapid evolution of materials properties that takes place on the femtosecond time scale as a solid nanostructure is transformed into a dense plasma. (Figure Presented).eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/18666
dc.identifier.urihttps://doi.org/10.34657/17685
dc.language.isoeng
dc.publisherWashington, DC : ACS
dc.relation.doihttps://doi.org/10.1021/nn503199v
dc.relation.essn1936-086X
dc.relation.issn1936-0851
dc.rights.licenseACS AuthorChoice
dc.rights.urihttps://pubs.acs.org/page/policy/authorchoice_termsofuse.html
dc.subject.ddc540
dc.subject.otherfemtosecond laserseng
dc.subject.otherfinite-difference time-domaineng
dc.subject.otherlocal field enhancementeng
dc.subject.otherphotoion spectroscopyeng
dc.subject.otherplasmonicseng
dc.titleMapping Nanoscale Absorption of Femtosecond Laser Pulses Using Plasma Explosion Imagingeng
dc.typeArticle
dc.typeText
tib.accessRightsopenAccess
wgl.contributorINP
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
hickstein-et-al-2014-mapping-nanoscale-absorption-of-femtosecond.pdf
Size:
7.35 MB
Format:
Adobe Portable Document Format
Description:
Collections