Static Disorder in Excitation Energies of the Fenna-Matthews-Olson Protein: Structure-Based Theory Meets Experiment

dc.bibliographicCitation.firstPage10306eng
dc.bibliographicCitation.issue24eng
dc.bibliographicCitation.journalTitleJournal of Physical Chemistry Letterseng
dc.bibliographicCitation.lastPage10314eng
dc.bibliographicCitation.volume11eng
dc.contributor.authorChaillet, Martin L.
dc.contributor.authorLengauer, Florian
dc.contributor.authorAdolphs, Julian
dc.contributor.authorMüh, Frank
dc.contributor.authorFokas, Alexander S.
dc.contributor.authorCole, Daniel J.
dc.contributor.authorChin, Alex W.
dc.contributor.authorRenger, Thomas
dc.date.accessioned2021-07-23T08:52:38Z
dc.date.available2021-07-23T08:52:38Z
dc.date.issued2020
dc.description.abstractInhomogeneous broadening of optical lines of the Fenna-Matthews-Olson (FMO) light-harvesting protein is investigated by combining a Monte Carlo sampling of low-energy conformational substates of the protein with a quantum chemical/electrostatic calculation of local transition energies (site energies) of the pigments. The good agreement between the optical spectra calculated for the inhomogeneous ensemble and the experimental data demonstrates that electrostatics is the dominant contributor to static disorder in site energies. Rotamers of polar amino acid side chains are found to cause bimodal distribution functions of site energy shifts, which can be probed by hole burning and single-molecule spectroscopy. When summing over the large number of contributions, the resulting distribution functions of the site energies become Gaussians, and the correlations in site energy fluctuations at different sites practically average to zero. These results demonstrate that static disorder in the FMO protein is in the realm of the central limit theorem of statistics. © 2020 American Chemical Society.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6338
dc.identifier.urihttps://doi.org/10.34657/5385
dc.language.isoengeng
dc.publisherWashington, DC : ACSeng
dc.relation.doihttps://doi.org/10.1021/acs.jpclett.0c03123
dc.relation.essn1948-7185
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherDistribution functionseng
dc.subject.otherExcitation energyeng
dc.subject.otherMonte Carlo methodseng
dc.subject.otherQuantum chemistryeng
dc.subject.otherBimodal distributioneng
dc.subject.otherCentral Limit Theoremeng
dc.subject.otherConformational substateseng
dc.subject.otherInhomogeneous broadeningeng
dc.subject.otherInhomogeneous ensembleseng
dc.subject.otherLight harvesting proteinseng
dc.subject.otherMonte Carlo samplingeng
dc.subject.otherSingle molecule spectroscopyeng
dc.subject.otherProteinseng
dc.titleStatic Disorder in Excitation Energies of the Fenna-Matthews-Olson Protein: Structure-Based Theory Meets Experimenteng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorATBeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acs.jpclett.0c03123.pdf
Size:
3.31 MB
Format:
Adobe Portable Document Format
Description:
Collections