Sequential testing problems for some diffusion processes
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 1178 | |
dc.contributor.author | Gapeev, Pavel | |
dc.date.accessioned | 2016-03-24T17:38:12Z | |
dc.date.available | 2019-06-28T08:02:23Z | |
dc.date.issued | 2006 | |
dc.description.abstract | We study the Bayesian problem of sequential testing of two simple hypotheses about the local drift of an observed diffusion process. The optimal stopping time is found as the first time when the a posteriori probability process leaves the region defined by two stochastic boundaries depending on the observation process. It is shown that under some nontrivial relationships on the coefficients of the observed diffusion the problem admits a closed form solution. The method of proof is based on embedding the initial problem into a two-dimensional optimal stopping problem and solving the equivalent free-boundary problem by means of the smooth-fit conditions. | |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 0946-8633 | |
dc.identifier.uri | https://doi.org/10.34657/3140 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/1821 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.subject.ddc | 510 | |
dc.title | Sequential testing problems for some diffusion processes | |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 519715535.pdf
- Size:
- 258.74 KB
- Format:
- Adobe Portable Document Format
- Description: