Three-Dimensional Cobalt Hydroxide Hollow Cube/Vertical Nanosheets with High Desalination Capacity and Long-Term Performance Stability in Capacitive Deionization

dc.bibliographicCitation.firstPage9754145
dc.bibliographicCitation.firstPage9754145
dc.bibliographicCitation.journalTitleResearcheng
dc.bibliographicCitation.volume2021
dc.contributor.authorXiong, Yuecheng
dc.contributor.authorYu, Fei
dc.contributor.authorArnold, Stefanie
dc.contributor.authorWang, Lei
dc.contributor.authorPresser, Volker
dc.contributor.authorRen, Yifan
dc.contributor.authorMa, Jie
dc.date.accessioned2022-03-10T12:41:27Z
dc.date.available2022-03-10T12:41:27Z
dc.date.issued2021
dc.description.abstractFaradaic electrode materials have significantly improved the performance of membrane capacitive deionization, which offers an opportunity to produce freshwater from seawater or brackish water in an energy-efficient way. However, Faradaic materials hold the drawbacks of slow desalination rate due to the intrinsic low ion diffusion kinetics and inferior stability arising from the volume expansion during ion intercalation, impeding the engineering application of capacitive deionization. Herein, a pseudocapacitive material with hollow architecture was prepared via template-etching method, namely, cuboid cobalt hydroxide, with fast desalination rate (3.3 mg (NaCl)·g-1 (h-Co(OH)2)·min-1 at 100 mA·g-1) and outstanding stability (90% capacity retention after 100 cycles). The hollow structure enables swift ion transport inside the material and keeps the electrode intact by alleviating the stress induced from volume expansion during the ion capture process, which is corroborated well by in situ electrochemical dilatometry and finite element simulation. Additionally, benefiting from the elimination of unreacted bulk material and vertical cobalt hydroxide nanosheets on the exterior surface, the synthesized material provides a high desalination capacity ( mg (NaCl)·g-1 (h-Co(OH)2) at 30 mA·g-1). This work provides a new strategy, constructing microscale hollow faradic configuration, to further boost the desalination performance of Faradaic materials.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8218
dc.identifier.urihttps://doi.org/10.34657/7256
dc.language.isoengeng
dc.publisher[Beijing] : China Association for Science and Technology
dc.relation.doihttps://doi.org/10.34133/2021/9754145
dc.relation.essn2639-5274
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc333.7
dc.subject.ddc500
dc.subject.ddc600
dc.subject.otherCobalt compoundseng
dc.subject.otherElectrochemical electrodeseng
dc.subject.otherEnergy efficiencyeng
dc.subject.otherEtchingeng
dc.subject.otherIonseng
dc.subject.otherNanosheetseng
dc.subject.otherSodium chlorideeng
dc.subject.otherCapacitive deionizationeng
dc.subject.otherElectrode materialeng
dc.subject.otherFaradaic electrodeseng
dc.subject.otherFresh Watereng
dc.subject.otherHollow cubeseng
dc.subject.otherLong term performanceeng
dc.subject.otherMembrane capacitive deionizationeng
dc.subject.otherPerformanceeng
dc.subject.otherPerformance stabilityeng
dc.subject.otherVolume expansioneng
dc.subject.otherDesalinationeng
dc.titleThree-Dimensional Cobalt Hydroxide Hollow Cube/Vertical Nanosheets with High Desalination Capacity and Long-Term Performance Stability in Capacitive Deionizationeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorINMger
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Three-Dimensional_Cobalt_Hydroxide.pdf
Size:
2.93 MB
Format:
Adobe Portable Document Format
Description:
Collections