Coherent interaction of atoms with a beam of light confined in a light cage

dc.bibliographicCitation.firstPage114eng
dc.bibliographicCitation.journalTitleLight : Science & Applicationseng
dc.bibliographicCitation.volume10eng
dc.contributor.authorDavidson-Marquis, Flavie
dc.contributor.authorGargiulo, Julian
dc.contributor.authorGómez-López, Esteban
dc.contributor.authorJang, Bumjoon
dc.contributor.authorKroh, Tim
dc.contributor.authorMüller, Chris
dc.contributor.authorZiegler, Mario
dc.contributor.authorMaier, Stefan A.
dc.contributor.authorKübler, Harald
dc.contributor.authorSchmidt, Markus A.
dc.contributor.authorBenson, Oliver
dc.date.accessioned2022-03-25T06:57:10Z
dc.date.available2022-03-25T06:57:10Z
dc.date.issued2021
dc.description.abstractControlling coherent interaction between optical fields and quantum systems in scalable, integrated platforms is essential for quantum technologies. Miniaturised, warm alkali-vapour cells integrated with on-chip photonic devices represent an attractive system, in particular for delay or storage of a single-photon quantum state. Hollow-core fibres or planar waveguides are widely used to confine light over long distances enhancing light-matter interaction in atomic-vapour cells. However, they suffer from inefficient filling times, enhanced dephasing for atoms near the surfaces, and limited light-matter overlap. We report here on the observation of modified electromagnetically induced transparency for a non-diffractive beam of light in an on-chip, laterally-accessible hollow-core light cage. Atomic layer deposition of an alumina nanofilm onto the light-cage structure was utilised to precisely tune the high-transmission spectral region of the light-cage mode to the operation wavelength of the atomic transition, while additionally protecting the polymer against the corrosive alkali vapour. The experiments show strong, coherent light-matter coupling over lengths substantially exceeding the Rayleigh range. Additionally, the stable non-degrading performance and extreme versatility of the light cage provide an excellent basis for a manifold of quantum-storage and quantum-nonlinear applications, highlighting it as a compelling candidate for all-on-chip, integrable, low-cost, vapour-based photon delay.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8374
dc.identifier.urihttps://doi.org/10.34657/7412
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/s41377-021-00556-z
dc.relation.essn2047-7538
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherAluminaeng
dc.subject.otherAluminum oxideeng
dc.subject.otherAtomic layer depositioneng
dc.subject.otherCorrosion protectioneng
dc.subject.otherOptical fiberseng
dc.subject.otherParticle beamseng
dc.subject.otherPhotonic deviceseng
dc.subject.otherPhotonseng
dc.subject.otherCoherent interactioneng
dc.subject.otherElectromagnetically-induced transparencyeng
dc.subject.otherIntegrated platformeng
dc.subject.otherLight-matter couplingeng
dc.subject.otherLight-matter interactionseng
dc.subject.otherNonlinear applicationseng
dc.subject.otherOperation wavelengtheng
dc.subject.otherQuantum technologieseng
dc.subject.otherAtomseng
dc.titleCoherent interaction of atoms with a beam of light confined in a light cageeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPHTeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Coherent_interaction_of_atoms.pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format
Description:
Collections