Amorphous-Like Ultralow Thermal Transport in Crystalline Argyrodite Cu7PS6

dc.bibliographicCitation.articleNumber2400258
dc.bibliographicCitation.firstPage2400258
dc.bibliographicCitation.journalTitleAdvanced Scienceeng
dc.bibliographicCitation.volumeEarly view
dc.contributor.authorShen, Xingchen
dc.contributor.authorOuyang, Niuchang
dc.contributor.authorHuang, Yuling
dc.contributor.authorTung, Yung‐Hsiang
dc.contributor.authorYang, Chun‐Chuen
dc.contributor.authorFaizan, Muhammad
dc.contributor.authorPerez, Nicolas
dc.contributor.authorHe, Ran
dc.contributor.authorSotnikov, Andrei
dc.contributor.authorWilla, Kristin
dc.contributor.authorWang, Chen
dc.contributor.authorChen, Yue
dc.contributor.authorGuilmeau, Emmanuel
dc.date.accessioned2024-05-10T05:38:15Z
dc.date.available2024-05-10T05:38:15Z
dc.date.issued2024
dc.description.abstractDue to their amorphous-like ultralow lattice thermal conductivity both below and above the superionic phase transition, crystalline Cu- and Ag-based superionic argyrodites have garnered widespread attention as promising thermoelectric materials. However, despite their intriguing properties, quantifying their lattice thermal conductivities and a comprehensive understanding of the microscopic dynamics that drive these extraordinary properties are still lacking. Here, an integrated experimental and theoretical approach is adopted to reveal the presence of Cu-dominated low-energy optical phonons in the Cu-based argyrodite Cu7PS6. These phonons yield strong acoustic-optical phonon scattering through avoided crossing, enabling ultralow lattice thermal conductivity. The Unified Theory of thermal transport is employed to analyze heat conduction and successfully reproduce the experimental amorphous-like ultralow lattice thermal conductivities, ranging from 0.43 to 0.58 W m−1 K−1, in the temperature range of 100–400 K. The study reveals that the amorphous-like ultralow thermal conductivity of Cu7PS6 stems from a significantly dominant wave-like conduction mechanism. Moreover, the simulations elucidate the wave-like thermal transport mainly results from the contribution of Cu-associated low-energy overlapping optical phonons. This study highlights the crucial role of low-energy and overlapping optical modes in facilitating amorphous-like ultralow thermal transport, providing a thorough understanding of the underlying complex dynamics of argyrodites.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/14594
dc.identifier.urihttps://doi.org/10.34657/13625
dc.language.isoeng
dc.publisherWeinheim : Wiley-VCH
dc.relation.doihttps://doi.org/10.1002/advs.202400258
dc.relation.essn2198-3844
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc500
dc.subject.ddc600
dc.subject.ddc624
dc.subject.otheramorphous-like ultralow thermal transporteng
dc.subject.otherargyrodite Cu7PS6eng
dc.subject.othercrystal structureeng
dc.subject.otherCu Diffusioneng
dc.subject.otherlattice dynamicseng
dc.titleAmorphous-Like Ultralow Thermal Transport in Crystalline Argyrodite Cu7PS6eng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorIFWD
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Amorphous‐Like-Ultralow-Thermal-Transport.pdf
Size:
2.83 MB
Format:
Adobe Portable Document Format
Description:
Collections