LLM-Empowered Event-Chain Driven Code Generation for ADAS in SDV systems

Loading...
Thumbnail Image

Date

Volume

Issue

Journal

Series Titel

TUM-I Technische Universität München, Institut für Informatik ; 25123

Book Title

Publisher

Hannover : Technische Informationsbibliothek

Link to publishers version

Abstract

This paper presents an event-chain–driven, LLMempowered workflow for generating validated, event-driven automotive code from natural-language requirements. A Retrieval- Augmented Generation (RAG) layer retrieves relevant signals from large and evolving Vehicle Signal Specification (VSS) catalogs as code generation prompt context, reducing hallucinations and ensuring architectural correctness. Retrieved signals are mapped and validated before being transformed into event chains that encode causal and timing constraints. These event chains guide and constrain LLM-based code synthesis, ensuring behavioral consistency and real-time feasibility. Based on our initial findings from the emergency braking case study, with the proposed approach, we managed to achieve valid signal usage and consistent code generation without LLM retraining. Datei-Upload durch TIB

Description

Keywords

License

Es gilt deutsches Urheberrecht. Das Werk bzw. der Inhalt darf zum eigenen Gebrauch kostenfrei heruntergeladen, konsumiert, gespeichert oder ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. - German copyright law applies. The work or content may be downloaded, consumed, stored or printed for your own use but it may not be distributed via the internet or passed on to external parties.