Process Analysis of Main Organic Compounds Dissolved in Aqueous Phase by Hydrothermal Processing of Açaí (Euterpe oleraceae, Mart.) Seeds: Influence of Process Temperature, Biomass-to-Water Ratio, and Production Scales

dc.bibliographicCitation.firstPage5608eng
dc.bibliographicCitation.issue18eng
dc.bibliographicCitation.volume14eng
dc.contributor.authorda Silva, Conceição de Maria Sales
dc.contributor.authorde Castro, Douglas Alberto Rocha
dc.contributor.authorSantos, Marcelo Costa
dc.contributor.authorAlmeida, Hélio da Silva
dc.contributor.authorSchultze, Maja
dc.contributor.authorLüder, Ulf
dc.contributor.authorHoffmann, Thomas
dc.contributor.authorMachado, Nélio Teixeira
dc.date.accessioned2022-01-24T06:32:12Z
dc.date.available2022-01-24T06:32:12Z
dc.date.issued2021
dc.description.abstractThis work aims to systematically investigate the influence of process temperature, biomass-to-water ratio, and production scales (laboratory and pilot) on the chemical composition of aqueous and gaseous phases and mass production of chemicals by hydrothermal processing of Açaí (Euterpe oleraceae, Mart.) seeds. The hydrothermal carbonization was carried out at 175, 200, 225, and 250 °C at 2 °C/min and a biomass-to-water ratio of 1:10; at 250 °C at 2 °C/min and biomass-to-water ratios of 1:10, 1:15, and 1:20 in technical scale; and at 200, 225, and 250 °C at 2 °C/min and a biomass-to-water ratio of 1:10 in laboratory scale. The elemental composition (C, H, N, S) in the solid phase was determined to compute the HHV. The chemical composition of the aqueous phase was determined by GC and HPLC and the volumetric composition of the gaseous phase using an infrared gas analyzer. For the experiments in the pilot test scale with a constant biomass-to-water ratio of 1:10, the yields of solid, liquid, and gaseous phases varied between 53.39 and 37.01% (wt.), 46.61 and 59.19% (wt.), and 0.00 and 3.80% (wt.), respectively. The yield of solids shows a smooth exponential decay with temperature, while that of liquid and gaseous phases showed a smooth growth. By varying the biomass-to-water ratios, the yields of solid, liquid, and gaseous reaction products varied between 53.39 and 32.09% (wt.), 46.61 and 67.28% (wt.), and 0.00 and 0.634% (wt.), respectively. The yield of solids decreased exponentially with increasing water-to-biomass ratio, and that of the liquid phase increased in a sigmoid fashion. For a constant biomass-to-water ratio, the concentrations of furfural and HMF decreased drastically with increasing temperature, reaching a minimum at 250 °C, while that of phenols increased. In addition, the concentrations of CH3COOH and total carboxylic acids increased, reaching a maximum concentration at 250 °C. For constant process temperature, the concentrations of aromatics varied smoothly with temperature. The concentrations of furfural, HMF, and catechol decreased with temperature, while that of phenols increased. The concentrations of CH3COOH and total carboxylic acids decreased exponentially with temperature. Finally, for the experiments with varying water-to-biomass ratios, the productions of chemicals (furfural, HMF, phenols, cathecol, and acetic acid) in the aqueous phase is highly dependent on the biomass-to-water ratio. For the experiments at the laboratory scale with a constant biomass-to-water ratio of 1:10, the yields of solids ranged between 55.9 and 51.1% (wt.), showing not only a linear decay with temperature but also a lower degradation grade. The chemical composition of main organic compounds (furfural, HMF, phenols, catechol, and acetic acid) dissolved in the aqueous phase in laboratory-scale study showed the same behavior as those obtained in the pilot-scale study.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7893
dc.identifier.urihttps://doi.org/10.34657/6934
dc.language.isoengeng
dc.publisherBasel : MDPIeng
dc.relation.doihttps://doi.org/10.3390/en14185608
dc.relation.essn1996-1073
dc.relation.ispartofseriesEnergies : open-access journal of related scientific research, technology development and studies in policy and management 14 (2021), Nr. 18eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectAcetic acideng
dc.subjectAçaí seedseng
dc.subjectFurfuraleng
dc.subjectHMFeng
dc.subjectHot compressed watereng
dc.subjectHydrothermal carbonizationeng
dc.subjectMass productioneng
dc.subjectProcess analysiseng
dc.subject.ddc620eng
dc.titleProcess Analysis of Main Organic Compounds Dissolved in Aqueous Phase by Hydrothermal Processing of Açaí (Euterpe oleraceae, Mart.) Seeds: Influence of Process Temperature, Biomass-to-Water Ratio, and Production Scaleseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleEnergies : open-access journal of related scientific research, technology development and studies in policy and managementeng
tib.accessRightsopenAccesseng
wgl.contributorATBeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Process Analysis of Main Organic Compounds Dissolved in Aqueous Phase by Hydrothermal Processing of Açaí (Euterpe oleraceae, Mart.) Seeds_Influence of....pdf
Size:
7.25 MB
Format:
Adobe Portable Document Format
Description: