Laser cooling in Yb:KY3F10: a comparison with Yb:YLF

Loading...
Thumbnail Image
Date
2022
Volume
30
Issue
26
Journal
Optics Express
Series Titel
Book Title
Publisher
Washington, DC : Optica
Link to publishers version
Abstract

Laser cooling by anti-Stokes fluorescence is a technology to realize all-solid-state optical cryocoolers. We grew Yb3+-doped KY3F10 (Yb:KYF) crystals as novel laser cooling media and compare their cooling performance to Yb3+-doped LiYF4 (Yb:YLF) crystals also grown in our institute. We present temperature-dependent absorption and emission cross sections as well as the fluorescence lifetime of Yb:KYF, and calculate its material figure-of-merit for laser cooling. Yb:KYF exhibits a higher figure-of-merit than Yb:YLF at temperatures below 200 K. This is because, in contrast to Yb:YLF, the excitation transition from the second-highest Stark level of the ground state is best-suited for cryogenic cooling in Yb:KYF. Thus, it has the potential to achieve unprecedentedly low temperatures below the boiling point of liquid nitrogen. In this work, we observe the first laser cooling of Yb:KYF, and obtain a background absorption coefficient of ∼10−4 cm−1, which is among the lowest ever reported for Yb3+-doped fluoride crystals. A simple model calculation predicts that our Yb:KYF and Yb:YLF crystals can potentially be cooled down to ≈100 K in a high-power cooling setup. Our Yb:KYF crystals still leave room for further improvement through the optimization of the growth process and the use of purer raw materials.

Description
Keywords
Collections
License
Optica Open Access Publishing Agreement