Selective Earth-Abundant System for CO2 Reduction: Comparing Photo- and Electrocatalytic Processes

dc.bibliographicCitation.firstPage2091eng
dc.bibliographicCitation.issue3eng
dc.bibliographicCitation.journalTitleACS Catalysiseng
dc.bibliographicCitation.volume9eng
dc.contributor.authorSteinlechner C.
dc.contributor.authorRoesel A.F.
dc.contributor.authorOberem E.
dc.contributor.authorPäpcke A.
dc.contributor.authorRockstroh N.
dc.contributor.authorGloaguen F.
dc.contributor.authorLochbrunner S.
dc.contributor.authorLudwig R.
dc.contributor.authorSpannenberg A.
dc.contributor.authorJunge H.
dc.contributor.authorFrancke R.
dc.contributor.authorBeller M.
dc.date.accessioned2021-09-07T16:55:23Z
dc.date.available2021-09-07T16:55:23Z
dc.date.issued2019
dc.description.abstractThe valorization of CO2 via photo- or electrocatalytic reduction constitutes a promising approach toward the sustainable production of fuels or value-added chemicals using intermittent renewable energy sources. For this purpose, molecular catalysts are generally studied independently with respect to the photo- or the electrochemical application, although a unifying approach would be much more effective with respect to the mechanistic understanding and the catalyst optimization. In this context, we present a combined photo- and electrocatalytic study of three Mn diimine catalysts, which demonstrates the synergistic interplay between the two methods. The photochemical part of our study involves the development of a catalytic system containing a heteroleptic Cu photosensitizer and the sacrificial BIH reagent. The system shows exclusive selectivity for CO generation and renders turnover numbers which are among the highest reported thus far within the group of fully earth-abundant photocatalytic systems. The electrochemical part of our investigations complements the mechanistic understanding of the photochemical process and demonstrates that in the present case the sacrificial reagent, the photosensitizer, and the irradiation source can be replaced by the electrode and a weak Brønsted acid. © 2019 American Chemical Society.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6745
dc.identifier.urihttps://doi.org/10.34657/5792
dc.language.isoengeng
dc.publisherWashington, DC : American Chemical Societyeng
dc.relation.doihttps://doi.org/10.1021/acscatal.8b03548
dc.relation.essn21555435
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.ddc540eng
dc.subject.otherCarbon dioxideeng
dc.subject.otherCatalysiseng
dc.subject.otherCatalystseng
dc.subject.otherCoppereng
dc.subject.otherElectrocatalysiseng
dc.subject.otherManganeseeng
dc.subject.otherPhotocatalysiseng
dc.subject.otherPhotosensitizerseng
dc.subject.otherRenewable energy resourceseng
dc.subject.otherCarbon dioxide utilizationeng
dc.subject.otherElectrocatalytic processeng
dc.subject.otherElectrocatalytic reductioneng
dc.subject.otherElectrochemical applicationseng
dc.subject.otherPhotocatalytic systemseng
dc.subject.otherPhotochemical processeng
dc.subject.otherRenewable energy sourceeng
dc.subject.otherSustainable productioneng
dc.subject.otherReductioneng
dc.titleSelective Earth-Abundant System for CO2 Reduction: Comparing Photo- and Electrocatalytic Processeseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorLIKATeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
acscatal.8b03548.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
acscatal.9b05064.pdf
Size:
267.67 KB
Format:
Adobe Portable Document Format
Description:
Correction
Collections