Regularity and Bernstein-type results for nonlocal minimal surfaces

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1831
dc.contributor.authorFigalli, Alessio
dc.contributor.authorValdinoci, Enrico
dc.date.accessioned2016-03-24T17:37:46Z
dc.date.available2019-06-28T08:20:27Z
dc.date.issued2013
dc.description.abstractWe prove that, in every dimension, Lipschitz nonlocal minimal surfaces are smooth. Also, we extend to the nonlocal setting a famous theorem of De Giorgi [5] stating that the validity of Bernsteins theorem in dimension n + 1 is a consequence of the nonexistence of n-dimensional singular minimal cones in IRn.
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/3096
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3252
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.issn0946-8633eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.others-minimal surfaceseng
dc.subject.otherregularity theoryeng
dc.subject.otherBernstein’s Theoremeng
dc.subject.otherMinimalflächeeng
dc.titleRegularity and Bernstein-type results for nonlocal minimal surfaces
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
775078352.pdf
Size:
176.15 KB
Format:
Adobe Portable Document Format
Description: