Non-isothermal phase-field simulations of laser-written in-plane SiGe heterostructures for photonic applications

dc.bibliographicCitation.firstPage132eng
dc.bibliographicCitation.journalTitleCommunications Physicseng
dc.bibliographicCitation.volume4eng
dc.contributor.authorAktas, Ozan
dc.contributor.authorYamamoto, Yuji
dc.contributor.authorKaynak, Mehmet
dc.contributor.authorPeacock, Anna C.
dc.date.accessioned2022-01-17T12:02:07Z
dc.date.available2022-01-17T12:02:07Z
dc.date.issued2021
dc.description.abstractAdvanced solid-state devices, including lasers and modulators, require semiconductor heterostructures for nanoscale engineering of the electronic bandgap and refractive index. However, existing epitaxial growth methods are limited to fabrication of vertical heterostructures grown layer by layer. Here, we report the use of finite-element-method-based phase-field modelling with thermocapillary convection to investigate laser inscription of in-plane heterostructures within silicon-germanium films. The modelling is supported by experimental work using epitaxially-grown Si0.5Ge0.5 layers. The phase-field simulations reveal that various in-plane heterostructures with single or periodic interfaces can be fabricated by controlling phase segregation through modulation of the scan speed, power, and beam position. Optical simulations are used to demonstrate the potential for two devices: graded-index waveguides with Ge-rich (>70%) cores, and waveguide Bragg gratings with nanoscale periods (100–500 nm). Periodic heterostructure formation via sub-millisecond modulation of the laser parameters opens a route for post-growth fabrication of in-plane quantum wells and superlattices in semiconductor alloy films.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7827
dc.identifier.urihttps://doi.org/10.34657/6868
dc.language.isoengeng
dc.publisherLondon : Springer Natureeng
dc.relation.doihttps://doi.org/10.1038/s42005-021-00632-1
dc.relation.essn2399-3650
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherHeterojunctionseng
dc.subject.otherModulationeng
dc.subject.otherNanotechnologyeng
dc.subject.otherQuantum well laserseng
dc.subject.otherRefractive indexeng
dc.subject.otherSemiconducting germaniumeng
dc.subject.otherSemiconductor alloyseng
dc.subject.otherSemiconductor quantum wellseng
dc.subject.otherSemiconductor superlatticeseng
dc.subject.otherSolid state laserseng
dc.subject.otherWaveguideseng
dc.subject.otherGraded index waveguideseng
dc.subject.otherNanoscale engineeringeng
dc.subject.otherPhase field modellingeng
dc.subject.otherPhase-field simulationeng
dc.subject.otherSemiconductor heterostructureseng
dc.subject.otherSilicon germanium filmseng
dc.subject.otherThermocapillary convectioneng
dc.subject.otherWaveguide Bragg gratingeng
dc.subject.otherSi-Ge alloyseng
dc.titleNon-isothermal phase-field simulations of laser-written in-plane SiGe heterostructures for photonic applicationseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIHPeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Non-isothermal phase-field simulations of laser-written in-plane SiGe heterostructures for photonic applications.pdf
Size:
2.48 MB
Format:
Adobe Portable Document Format
Description:
Collections