Non-isothermal phase-field simulations of laser-written in-plane SiGe heterostructures for photonic applications

dc.bibliographicCitation.firstPage132eng
dc.bibliographicCitation.volume4eng
dc.contributor.authorAktas, Ozan
dc.contributor.authorYamamoto, Yuji
dc.contributor.authorKaynak, Mehmet
dc.contributor.authorPeacock, Anna C.
dc.date.accessioned2022-01-17T12:02:07Z
dc.date.available2022-01-17T12:02:07Z
dc.date.issued2021
dc.description.abstractAdvanced solid-state devices, including lasers and modulators, require semiconductor heterostructures for nanoscale engineering of the electronic bandgap and refractive index. However, existing epitaxial growth methods are limited to fabrication of vertical heterostructures grown layer by layer. Here, we report the use of finite-element-method-based phase-field modelling with thermocapillary convection to investigate laser inscription of in-plane heterostructures within silicon-germanium films. The modelling is supported by experimental work using epitaxially-grown Si0.5Ge0.5 layers. The phase-field simulations reveal that various in-plane heterostructures with single or periodic interfaces can be fabricated by controlling phase segregation through modulation of the scan speed, power, and beam position. Optical simulations are used to demonstrate the potential for two devices: graded-index waveguides with Ge-rich (>70%) cores, and waveguide Bragg gratings with nanoscale periods (100–500 nm). Periodic heterostructure formation via sub-millisecond modulation of the laser parameters opens a route for post-growth fabrication of in-plane quantum wells and superlattices in semiconductor alloy films.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7827
dc.identifier.urihttps://doi.org/10.34657/6868
dc.language.isoengeng
dc.publisherLondon : Springer Natureeng
dc.relation.doihttps://doi.org/10.1038/s42005-021-00632-1
dc.relation.essn2399-3650
dc.relation.ispartofseriesCommunications Physics 4 (2021)eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectHeterojunctionseng
dc.subjectModulationeng
dc.subjectNanotechnologyeng
dc.subjectQuantum well laserseng
dc.subjectRefractive indexeng
dc.subjectSemiconducting germaniumeng
dc.subjectSemiconductor alloyseng
dc.subjectSemiconductor quantum wellseng
dc.subjectSemiconductor superlatticeseng
dc.subjectSolid state laserseng
dc.subjectWaveguideseng
dc.subjectGraded index waveguideseng
dc.subjectNanoscale engineeringeng
dc.subjectPhase field modellingeng
dc.subjectPhase-field simulationeng
dc.subjectSemiconductor heterostructureseng
dc.subjectSilicon germanium filmseng
dc.subjectThermocapillary convectioneng
dc.subjectWaveguide Bragg gratingeng
dc.subjectSi-Ge alloyseng
dc.subject.ddc530eng
dc.titleNon-isothermal phase-field simulations of laser-written in-plane SiGe heterostructures for photonic applicationseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleCommunications Physicseng
tib.accessRightsopenAccesseng
wgl.contributorIHPeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Non-isothermal phase-field simulations of laser-written in-plane SiGe heterostructures for photonic applications.pdf
Size:
2.48 MB
Format:
Adobe Portable Document Format
Description:
Collections