Optimal distributed control of a diffuse interface model of tumor growth

Loading...
Thumbnail Image
Date
2016
Authors
Colli, Pierluigi
Gilardi, Gianni
Rocca, Elisabetta
Sprekels, Jürgen
Volume
2228
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

In this paper, a distributed optimal control problem is studied for a diffuse interface model of tumor growth which was proposed by HawkinsDaruud et al. in [25]. The model consists of a CahnHilliard equation for the tumor cell fraction 'coupled to a reaction-diffusion equation for a function phi representing the nutrientrich extracellular water volume fraction. The distributed control u monitors as a right-hand side the equation for sigma and can be interpreted as a nutrient supply or a medication, while the cost function, which is of standard tracking type, is meant to keep the tumor cell fraction under control during the evolution. We show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive the first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.