Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets

dc.bibliographicCitation.firstPage1682eng
dc.bibliographicCitation.issue3eng
dc.bibliographicCitation.journalTitleNano letters : a journal dedicated to nanoscience and nanotechnologyeng
dc.bibliographicCitation.lastPage1687eng
dc.bibliographicCitation.volume19eng
dc.contributor.authorAppel, Patrick
dc.contributor.authorShields, Brendan J.
dc.contributor.authorKosub, Tobias
dc.contributor.authorHedrich, Natascha
dc.contributor.authorHübner, René
dc.contributor.authorFaßbender, Jürgen
dc.contributor.authorMakarov, Denys
dc.contributor.authorMaletinsky, Patrick
dc.date.accessioned2021-08-25T06:53:03Z
dc.date.available2021-08-25T06:53:03Z
dc.date.issued2019
dc.description.abstractAntiferromagnets have recently emerged as attractive platforms for spintronics applications, offering fundamentally new functionalities compared with their ferromagnetic counterparts. Whereas nanoscale thin-film materials are key to the development of future antiferromagnetic spintronic technologies, existing experimental tools tend to suffer from low resolution or expensive and complex equipment requirements. We offer a simple, high-resolution alternative by addressing the ubiquitous surface magnetization of magnetoelectric antiferromagnets in a granular thin-film sample on the nanoscale using single-spin magnetometry in combination with spin-sensitive transport experiments. Specifically, we quantitatively image the evolution of individual nanoscale antiferromagnetic domains in 200 nm thin films of Cr 2 O 3 in real space and across the paramagnet-to-antiferromagnet phase transition, finding an average domain size of 230 nm, several times larger than the average grain size in the film. These experiments allow us to discern key properties of the Cr 2 O 3 thin film, including the boundary magnetic moment density, the variation of critical temperature throughout the film, the mechanism of domain formation, and the strength of exchange coupling between individual grains comprising the film. Our work offers novel insights into the magnetic ordering mechanism of Cr 2 O 3 and firmly establishes single-spin magnetometry as a versatile and widely applicable tool for addressing antiferromagnetic thin films on the nanoscale. © 2019 American Chemical Society.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6594
dc.identifier.urihttps://doi.org/10.34657/5641
dc.language.isogereng
dc.publisherWashington, DC : ACS Publ.eng
dc.relation.doihttps://doi.org/10.1021/acs.nanolett.8b04681
dc.relation.essn1530-6992
dc.relation.issn1530-6984
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc540eng
dc.subject.ddc660eng
dc.subject.otherAntiferromagnetseng
dc.subject.otherHall magnetometryeng
dc.subject.otherintergranular exchange energyeng
dc.subject.othermagnetoelectricseng
dc.subject.othernitrogen vacancy magnetometryeng
dc.subject.othersurface magnetizationeng
dc.titleNanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnetseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets.pdf
Size:
2.96 MB
Format:
Adobe Portable Document Format
Description:
Collections