Improving mass conservation in FE approximations of the Navier Stokes equations using continuous velocity fields: a connection between grad-div stabilization and Scott-Vogelius elements

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1510
dc.contributor.authorCase, Michael A.
dc.contributor.authorErvin, V.J.
dc.contributor.authorLinke, A.
dc.contributor.authorRebholz, L.G.
dc.date.accessioned2016-03-24T17:38:36Z
dc.date.available2019-06-28T08:05:08Z
dc.date.issued2010
dc.description.abstractThis article studies two methods for obtaining excellent mass conservation in finite element computations of the Navier-Stokes equations using continuous velocity fields. Under mild restrictions, the Scott-Vogelius element pair has recently been shown to be inf-sup stable and have optimal approximation properties, while also providing pointwise mass conservation. We present herein the first numerical tests of this element pair for the time dependent Navier-Stokes equations. We also prove that, again under these mild restrictions, the limit of the grad-div stabilized Taylor-Hood solutions to the Navier-Stokes problem converges to the Scott-Vogelius solution as the stabilization parameter tends to infinity. That is, in this setting, we provide theoretical justification that choosing the parameter large does not destroy the solution. A limiting result is also proven for the general case. Numerical tests are provided which verify the theory, and show how both Scott-Vogelius and grad-div stabilized Taylor-Hood (with large stabilization parameter) elements can provide accurate results with excellent mass conservation for Navier-Stokes approximations.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/2521
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2273
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherincompressible Navier-Stokes equationseng
dc.subject.othermixed finite elementseng
dc.subject.otherstabilized finite elementseng
dc.subject.othergrad-div stabilizationeng
dc.subject.otherTaylor-Hood elementeng
dc.subject.otherScott-Vogelius elementeng
dc.titleImproving mass conservation in FE approximations of the Navier Stokes equations using continuous velocity fields: a connection between grad-div stabilization and Scott-Vogelius elementseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
664837182.pdf
Size:
4.56 MB
Format:
Adobe Portable Document Format
Description: