Glacial CO 2 cycle as a succession of key physical and biogeochemical processes

dc.bibliographicCitation.firstPage251eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.lastPage264eng
dc.bibliographicCitation.volume8
dc.contributor.authorBrovkin, V.
dc.contributor.authorGanopolski, A.
dc.contributor.authorArcher, D.
dc.contributor.authorMunhoven, G.
dc.date.accessioned2018-08-29T00:06:50Z
dc.date.available2019-06-26T17:18:57Z
dc.date.issued2012
dc.description.abstractDuring glacial-interglacial cycles, atmospheric CO2 concentration varied by about 100 ppmv in amplitude. While testing mechanisms that have led to the low glacial CO2 level could be done in equilibrium model experiments, an ultimate goal is to explain CO2 changes in transient simulations through the complete glacial-interglacial cycle. The computationally efficient Earth System model of intermediate complexity CLIMBER-2 is used to simulate global biogeochemistry over the last glacial cycle (126 kyr). The physical core of the model (atmosphere, ocean, land and ice sheets) is driven by orbital changes and reconstructed radiative forcing from greenhouses gases, ice, and aeolian dust. The carbon cycle model is able to reproduce the main features of the CO2 changes: a 50 ppmv CO2 drop during glacial inception, a minimum concentration at the last glacial maximum 80 ppmv lower than the Holocene value, and an abrupt 60 ppmv CO2 rise during the deglaciation. The model deep ocean δ13C also resembles reconstructions from deep-sea cores. The main drivers of atmospheric CO2 evolve in time: changes in sea surface temperatures and in the volume of bottom water of southern origin control atmospheric CO2 during the glacial inception and deglaciation; changes in carbonate chemistry and marine biology are dominant during the first and second parts of the glacial cycle, respectively. These feedback mechanisms could also significantly impact the ultimate climate response to the anthropogenic perturbation.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/958
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/631
dc.language.isoengeng
dc.publisherMünchen : European Geopyhsical Unioneng
dc.relation.doihttps://doi.org/10.5194/cp-8-251-2012
dc.relation.ispartofseriesClimate of the Past, Volume 8, Issue 1, Page 251-264eng
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subjectbiogeochemical cycleeng
dc.subjectbottom watereng
dc.subjectcarbon dioxideeng
dc.subjectcarbonateeng
dc.subjectclimate feedbackeng
dc.subjectclimate variationeng
dc.subjectdeep seaeng
dc.subjectdeglaciationeng
dc.subjecteolian depositeeng
dc.subjectquilibriumeng
dc.subjectfeedback mechanismeng
dc.subjectglacial-interglacial cycleeng
dc.subjectHolocenehuman activityeng
dc.subjectLast Glacial Maximumeng
dc.subjectnumerical modeleng
dc.subjectorbital forcingeng
dc.subjectpaleoclimateeng
dc.subjectradiative forcingeng
dc.subjectreconstructioneng
dc.subjectsea surface temperatureeng
dc.subject.ddc550eng
dc.titleGlacial CO 2 cycle as a succession of key physical and biogeochemical processeseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleClimate of the Pasteng
tib.accessRightsopenAccesseng
wgl.contributorPIKeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cp-8-251-2012.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
Description: