Shallow and Undoped Germanium Quantum Wells: A Playground for Spin and Hybrid Quantum Technology

dc.bibliographicCitation.firstPage1807613eng
dc.bibliographicCitation.issue14eng
dc.bibliographicCitation.volume29eng
dc.contributor.authorSammak, Amir
dc.contributor.authorSabbagh, Diego
dc.contributor.authorHendrickx, Nico W.
dc.contributor.authorLodari, Mario
dc.contributor.authorWuetz, Brian Paquelet
dc.contributor.authorTosato, Alberto
dc.contributor.authorYeoh, LaReine
dc.contributor.authorBollani, Monica
dc.contributor.authorVirgilio, Michele
dc.contributor.authorSchubert, Markus Andreas
dc.contributor.authorZaumseil, Peter
dc.contributor.authorCapellini, Giovanni
dc.contributor.authorVeldhorst, Menno
dc.contributor.authorScappucci, Giordano
dc.date.accessioned2021-08-31T09:00:18Z
dc.date.available2021-08-31T09:00:18Z
dc.date.issued2019
dc.description.abstractBuried-channel semiconductor heterostructures are an archetype material platform for the fabrication of gated semiconductor quantum devices. Sharp confinement potential is obtained by positioning the channel near the surface; however, nearby surface states degrade the electrical properties of the starting material. Here, a 2D hole gas of high mobility (5 × 10 5 cm 2 V −1 s −1 ) is demonstrated in a very shallow strained germanium (Ge) channel, which is located only 22 nm below the surface. The top-gate of a dopant-less field effect transistor controls the channel carrier density confined in an undoped Ge/SiGe heterostructure with reduced background contamination, sharp interfaces, and high uniformity. The high mobility leads to mean free paths ≈ 6 µm, setting new benchmarks for holes in shallow field effect transistors. The high mobility, along with a percolation density of 1.2 × 10 11 cm −2 , light effective mass (0.09m e ), and high effective g-factor (up to 9.2) highlight the potential of undoped Ge/SiGe as a low-disorder material platform for hybrid quantum technologies. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6634
dc.identifier.urihttps://doi.org/10.34657/5681
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/adfm.201807613
dc.relation.essn1099-0712
dc.relation.essn1616-3028
dc.relation.ispartofseriesAdvanced Functional Materials 29 (2019), Nr. 14eng
dc.relation.issn1616-301X
dc.relation.issn1057-9257
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subjectgermaniumeng
dc.subjectmobilityeng
dc.subjectquantum deviceseng
dc.subjectquantum welleng
dc.subject.ddc620eng
dc.subject.ddc540eng
dc.subject.ddc530eng
dc.titleShallow and Undoped Germanium Quantum Wells: A Playground for Spin and Hybrid Quantum Technologyeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAdvanced Functional Materialseng
tib.accessRightsopenAccesseng
wgl.contributorIHPeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adfm.201807613.pdf
Size:
3.07 MB
Format:
Adobe Portable Document Format
Description: