Modelling charge transport in perovskite solar cells: Potential-based and limiting ion depletion

Loading...
Thumbnail Image
Date
2020
Volume
2780
Issue
Journal
Series Titel
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract

From Maxwell--Stefan diffusion and general electrostatics, we derive a drift-diffusion model for charge transport in perovskite solar cells (PSCs) where any ion in the perovskite layer may flexibly be chosen to be mobile or immobile. Unlike other models in the literature, our model is based on quasi Fermi potentials instead of densities. This allows to easily include nonlinear diffusion (based on Fermi--Dirac, Gauss--Fermi or Blakemore statistics for example) as well as limit the ion depletion (via the Fermi--Dirac integral of order-1). The latter will be motivated by a grand-canonical formalism of ideal lattice gas. Furthermore, our model allows to use different statistics for different species. We discuss the thermodynamic equilibrium, electroneutrality as well as generation/recombination. Finally, we present numerical finite volume simulations to underline the importance of limiting ion depletion.

Description
Keywords
Finite volume methods, perovskite solar cells, semiconductor device modelling, drift-diffusion equations, Scharfetter--Gummel methods
Citation
Abdel, D., Vágner, P., Fuhrmann, J., & Farrell, P. (2020). Modelling charge transport in perovskite solar cells: Potential-based and limiting ion depletion (Vol. 2780). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik. https://doi.org//10.20347/WIAS.PREPRINT.2780
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.