Deciding Non-Freeness of Rational Möbius Groups

Loading...
Thumbnail Image
Date
2022
Volume
7
Issue
Journal
Series Titel
Oberwolfach Preprints (OWP)
Book Title
Publisher
Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach
Link to publishers version
Abstract

We explore a new computational approach to a classical problem: certifying non-freeness of (2-generator, parabolic) Möbius subgroups of SL(2, Q). The main tools used are algorithms for Zariski dense groups and algorithms to compute a presentation of SL(2, R) for a localization R = Z[1/b] of Z. We prove that a Möbius subgroup G is not free by showing that it has finite index in the relevant SL(2, R). Further information about the structure of G is obtained; for example, we compute the minimal subgroup of finite index in SL(2, R) that contains G.

Description
Keywords
Free group, Möbius group, Arithmetic group, Algorithm, Software
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.