Deciding Non-Freeness of Rational Möbius Groups
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | |
dc.bibliographicCitation.volume | 7 | |
dc.contributor.author | Detinko, Alla | |
dc.contributor.author | Flannery, Dane | |
dc.contributor.author | Hulpke, Alexander | |
dc.date.accessioned | 2024-10-17T05:34:14Z | |
dc.date.available | 2024-10-17T05:34:14Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We explore a new computational approach to a classical problem: certifying non-freeness of (2-generator, parabolic) Möbius subgroups of SL(2, Q). The main tools used are algorithms for Zariski dense groups and algorithms to compute a presentation of SL(2, R) for a localization R = Z[1/b] of Z. We prove that a Möbius subgroup G is not free by showing that it has finite index in the relevant SL(2, R). Further information about the structure of G is obtained; for example, we compute the minimal subgroup of finite index in SL(2, R) that contains G. | |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/16974 | |
dc.identifier.uri | https://doi.org/10.34657/15996 | |
dc.language.iso | eng | |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWP-2022-07 | |
dc.relation.issn | 1864-7596 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | |
dc.subject | Free group | |
dc.subject | Möbius group | |
dc.subject | Arithmetic group | |
dc.subject | Algorithm | |
dc.subject | Software | |
dc.subject.ddc | 510 | |
dc.title | Deciding Non-Freeness of Rational Möbius Groups | |
dc.type | Report | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2022_07.pdf
- Size:
- 529.97 KB
- Format:
- Adobe Portable Document Format
- Description: