Deciding Non-Freeness of Rational Möbius Groups

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume7
dc.contributor.authorDetinko, Alla
dc.contributor.authorFlannery, Dane
dc.contributor.authorHulpke, Alexander
dc.date.accessioned2024-10-17T05:34:14Z
dc.date.available2024-10-17T05:34:14Z
dc.date.issued2022
dc.description.abstractWe explore a new computational approach to a classical problem: certifying non-freeness of (2-generator, parabolic) Möbius subgroups of SL(2, Q). The main tools used are algorithms for Zariski dense groups and algorithms to compute a presentation of SL(2, R) for a localization R = Z[1/b] of Z. We prove that a Möbius subgroup G is not free by showing that it has finite index in the relevant SL(2, R). Further information about the structure of G is obtained; for example, we compute the minimal subgroup of finite index in SL(2, R) that contains G.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16974
dc.identifier.urihttps://doi.org/10.34657/15996
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2022-07
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subjectFree group
dc.subjectMöbius group
dc.subjectArithmetic group
dc.subjectAlgorithm
dc.subjectSoftware
dc.subject.ddc510
dc.titleDeciding Non-Freeness of Rational Möbius Groups
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2022_07.pdf
Size:
529.97 KB
Format:
Adobe Portable Document Format
Description: