Optimal control of a phase field system of Caginalp type with fractional operators
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
In their recent work ``Well-posedness, regularity and asymptotic analyses for a fractional phase field system'' (Asymptot. Anal. 114 (2019), 93--128), two of the present authors have studied phase field systems of Caginalp type, which model nonconserved, nonisothermal phase transitions and in which the occurring diffusional operators are given by fractional versions in the spectral sense of unbounded, monotone, selfadjoint, linear operators having compact resolvents. In this paper, we complement this analysis by investigating distributed optimal control problems for such systems. It is shown that the associated control-to-state operator is Fréchet differentiable between suitable Banach spaces, and meaningful first-order necessary optimality conditions are derived in terms of a variational inequality and the associated adjoint state variables.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.