Nonparametric change point detection in regression

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2687
dc.contributor.authorAvanesov, Valeriy
dc.date.accessioned2022-06-30T12:42:34Z
dc.date.available2022-06-30T12:42:34Z
dc.date.issued2020
dc.description.abstractThis paper considers the prominent problem of change-point detection in regression. The study suggests a novel testing procedure featuring a fully data-driven calibration scheme. The method is essentially a black box, requiring no tuning from the practitioner. The approach is investigated from both theoretical and practical points of view. The theoretical study demonstrates proper control of first-type error rate under H0 and power approaching 1 under H1. The experiments conducted on synthetic data fully support the theoretical claims. In conclusion, the method is applied to financial data, where it detects sensible change-points. Techniques for change-point localization are also suggested and investigatedeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9337
dc.identifier.urihttps://doi.org/10.34657/8375
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2687
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherBootstrapeng
dc.subject.otherchange point detectioneng
dc.subject.othernonparametricseng
dc.subject.otherregressioneng
dc.subject.othermultiscaleeng
dc.titleNonparametric change point detection in regressioneng
dc.typeReporteng
dc.typeTexteng
dcterms.extent26 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2687.pdf
Size:
344.18 KB
Format:
Adobe Portable Document Format
Description: