Nonparametric change point detection in regression
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2687 | |
dc.contributor.author | Avanesov, Valeriy | |
dc.date.accessioned | 2022-06-30T12:42:34Z | |
dc.date.available | 2022-06-30T12:42:34Z | |
dc.date.issued | 2020 | |
dc.description.abstract | This paper considers the prominent problem of change-point detection in regression. The study suggests a novel testing procedure featuring a fully data-driven calibration scheme. The method is essentially a black box, requiring no tuning from the practitioner. The approach is investigated from both theoretical and practical points of view. The theoretical study demonstrates proper control of first-type error rate under H0 and power approaching 1 under H1. The experiments conducted on synthetic data fully support the theoretical claims. In conclusion, the method is applied to financial data, where it detects sensible change-points. Techniques for change-point localization are also suggested and investigated | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9337 | |
dc.identifier.uri | https://doi.org/10.34657/8375 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2687 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Bootstrap | eng |
dc.subject.other | change point detection | eng |
dc.subject.other | nonparametrics | eng |
dc.subject.other | regression | eng |
dc.subject.other | multiscale | eng |
dc.title | Nonparametric change point detection in regression | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 26 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2687.pdf
- Size:
- 344.18 KB
- Format:
- Adobe Portable Document Format
- Description: