Quasi-monocrystalline silicon for low-noise end mirrors in cryogenic gravitational-wave detectors

dc.bibliographicCitation.firstPage43043
dc.bibliographicCitation.issue4
dc.bibliographicCitation.journalTitlePhysical review researcheng
dc.bibliographicCitation.volume4
dc.contributor.authorKiessling, Frank M.
dc.contributor.authorMurray, Peter G.
dc.contributor.authorKinley-Hanlon, Maya
dc.contributor.authorBuchovska, Iryna
dc.contributor.authorErvik, Torunn K.
dc.contributor.authorGraham, Victoria
dc.contributor.authorHough, Jim
dc.contributor.authorJohnston, Ross
dc.contributor.authorPietsch, Mike
dc.contributor.authorRowan, Sheila
dc.contributor.authorSchnabel, Roman
dc.contributor.authorTait, Simon C.
dc.contributor.authorSteinlechner, Jessica
dc.contributor.authorMartin, Iain W.
dc.date.accessioned2023-02-03T07:19:18Z
dc.date.available2023-02-03T07:19:18Z
dc.date.issued2022
dc.description.abstractMirrors made of silicon have been proposed for use in future cryogenic gravitational-wave detectors, which will be significantly more sensitive than current room-temperature detectors. These mirrors are planned to have diameters of ≈50 cm and a mass of ≈200 kg. While single-crystalline float-zone silicon meets the requirements of low optical absorption and low mechanical loss, the production of this type of material is restricted to sizes much smaller than required. Here we present studies of silicon produced by directional solidification. This material can be grown as quasi-monocrystalline ingots in sizes larger than currently required. We present measurements of a low room-temperature and cryogenic mechanical loss comparable with float-zone silicon. While the optical absorption of our test sample is significantly higher than required, the low mechanical loss motivates research into further absorption reduction in the future. While it is unclear if material pure enough for the transmissive detector input mirrors can be achieved, an absorption level suitable for the highly reflective coated end mirrors seems realistic. Together with the potential to produce samples much larger than ≈50 cm, this material may be of great benefit for realizing silicon-based gravitational-wave detectors.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11207
dc.identifier.urihttp://dx.doi.org/10.34657/10243
dc.language.isoeng
dc.publisherCollege Park, MD : APS
dc.relation.doihttps://doi.org/10.1103/physrevresearch.4.043043
dc.relation.essn2643-1564
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc530
dc.subject.othercurrenteng
dc.subject.otherFloat zone siliconeng
dc.subject.otherGravitational waves detectorseng
dc.subject.otherLower noiseeng
dc.subject.otherMeasurements ofeng
dc.subject.otherMechanical losseng
dc.subject.otherMonocrystallineeng
dc.subject.otherRoom temperature detectoreng
dc.subject.otherSingle-crystallineeng
dc.subject.otherTest sampleseng
dc.titleQuasi-monocrystalline silicon for low-noise end mirrors in cryogenic gravitational-wave detectorseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorIKZ
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Quasi-monocrystalline_silicon.pdf
Size:
4.52 MB
Format:
Adobe Portable Document Format
Description:
Collections