Concerted measurements of free amino acids at the Cabo Verde islands: high enrichments in submicron sea spray aerosol particles and cloud droplets

dc.bibliographicCitation.firstPage163eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.lastPage181eng
dc.bibliographicCitation.volume21eng
dc.contributor.authorTriesch, Nadja
dc.contributor.authorvan Pinxteren, Manuela
dc.contributor.authorEngel, Anja
dc.contributor.authorHerrmann, Hartmut
dc.date.accessioned2022-03-11T09:29:09Z
dc.date.available2022-03-11T09:29:09Z
dc.date.issued2021
dc.description.abstractMeasurements of free amino acids (FAAs) in the marine environment to elucidate their transfer from the ocean into the atmosphere, to marine aerosol particles and to clouds, were performed at the MarParCloud (marine biological production, organic aerosol particles and marine clouds: a process chain) campaign at the Cabo Verde islands in autumn 2017. According to physical and chemical specifications such as the behavior of air masses, particulate MSA concentrations and MSA=sulfate ratios, as well as particulate mass concentrations of dust tracers, aerosol particles predominantly of marine origin with low to medium dust influences were observed. FAAs were investigated in different compartments: they were examined in two types of seawater underlying water (ULW) and in the sea surface microlayer (SML), as well as in ambient marine size-segregated aerosol particle samples at two heights (ground height based at the Cape Verde Atmospheric Observatory, CVAO, and at 744m height on Mt. Verde) and in cloud water using concerted measurements. The ΣFAA concentration in the SML varied between 0.13 and 3.64 μmol L-1, whereas it was between 0.01 and 1.10 μmol L-1in the ULW; also, a strong enrichment of ΣFAA (EFSML: 1.1-298.4, average of 57.2) was found in the SML. In the submicron (0.05-1.2 μm) aerosol particles at the CVAO, the composition of FAAs was more complex, and higher atmospheric concentrations of ΣFAA (up to 6.3 ngm-3) compared to the supermicron (1.2-10 μm) aerosol particles (maximum of 0.5 ngm-3) were observed. The total ΣFAA concentration (PM10) was between 1.8 and 6.8 ngm-3and tended to increase during the campaign. Averaged ΣFAA concentrations in the aerosol particles on Mt. Verde were lower (submicron: 1.5 ngm-3; supermicron: 1.2 ngm-3) compared to the CVAO. A similar contribution percentage of ΣFAA to dissolved organic carbon (DOC) in the seawater (up to 7.6 %) and to water-soluble organic carbon (WSOC) in the submicron aerosol particles (up to 5.3 %) indicated a related transfer process of FAAs and DOC in the marine environment. Considering solely ocean-atmosphere transfer and neglecting atmospheric processing, high FAA enrichment factors were found in both aerosol particles in the submicron range (EFaer(ΣFAA):2×103-6×103) and medium enrichment factors in the supermicron range (EFaer(ΣFAA):1×101-3×101). In addition, indications for a biogenic FAA formation were observed. Furthermore, one striking finding was the high and varying FAA cloud water concentration (11.2-489.9 ngm-3), as well as enrichments (EFCW:4×103and 1×104compared to the SML and ULW, respectively), which were reported here for the first time. The abundance of inorganic marine tracers (sodium, methanesulfonic acid) in cloud water suggests an influence of oceanic sources on marine clouds. Finally, the varying composition of the FAAs in the different matrices shows that their abundance and ocean- atmosphere transfer are influenced by additional biotic and abiotic formation and degradation processes. Simple physicochemical parameters (e.g., surface activity) are not sufficient to describe the concentration and enrichments of the FAAs in the marine environment. For a precise representation in organic matter (OM) transfer models, further studies. © 2021 American Institute of Physics Inc.. All rights reserved.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8224
dc.identifier.urihttps://doi.org/10.34657/7262
dc.language.isoengeng
dc.publisherKatlenburg-Lindau : European Geosciences Unioneng
dc.relation.doihttps://doi.org/10.5194/acp-21-163-2021
dc.relation.essn1680-7324
dc.relation.ispartofseriesAtmospheric Chemistry and Physics 21 (2021), Nr. 1eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectfree amino acids (FAAs)eng
dc.subjectCabo Verde islandseng
dc.subjectsubmicron sea spray aerosol particleseng
dc.subjectMarParCloudeng
dc.subjectseawatereng
dc.subjectunderlying water (ULW)eng
dc.subjectsea surface microlayer (SML)eng
dc.subject.ddc550eng
dc.titleConcerted measurements of free amino acids at the Cabo Verde islands: high enrichments in submicron sea spray aerosol particles and cloud dropletseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAtmospheric Chemistry and Physicseng
tib.accessRightsopenAccesseng
wgl.contributorTROPOSeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acp-21-163-2021.pdf
Size:
976.92 KB
Format:
Adobe Portable Document Format
Description: