Magnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayers

dc.bibliographicCitation.firstPage113019eng
dc.bibliographicCitation.issue11eng
dc.bibliographicCitation.journalTitleNew Journal of Physicseng
dc.bibliographicCitation.lastPage9885eng
dc.bibliographicCitation.volume21eng
dc.contributor.authorSimmendinger, J.
dc.contributor.authorHanisch, J.
dc.contributor.authorBihler, M.
dc.contributor.authorIonescu, A.M.
dc.contributor.authorWeigand, M.
dc.contributor.authorSieger, M.
dc.contributor.authorHühne, R.
dc.contributor.authorRijckaert, H.
dc.contributor.authorVan Driessche, I.
dc.contributor.authorSchütz, G.
dc.contributor.authorAlbrecht, J.
dc.date.accessioned2020-07-18T06:12:40Z
dc.date.available2020-07-18T06:12:40Z
dc.date.issued2019
dc.description.abstractWe studied the impact of soft ferromagnetic permalloy (Py) on the shielding currents in a strong-pinning superconductor - YBa2Cu3O7-δ with Ba2Y(Nb/Ta)O6 nano-precipitates - by means of scanning transmission x-ray microscopy. Typically and in particular when in the thin film limit, superconductor/ferromagnet (SC/FM) bilayers exhibit isotropic properties of the flux line ensemble at all temperatures. However, in elements with small aspect ratio a significant anisotropy in flux penetration is observed. We explain this effect by local in-plane fields arising from anisotropic magnetic stray fields originated by the ferromagnet. This leads to direction-dependent motion of magnetic vortices inside the SC/FM bilayer. Our results demonstrate that small variations of the magnetic properties can have huge impact on the superconductor.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3627
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4998
dc.language.isoengeng
dc.publisherBristol : Institute of Physics Publishingeng
dc.relation.doihttps://doi.org/10.1088/1367-2630/ab4f56
dc.relation.issn1367-2630
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subject.ddc530eng
dc.subject.otherferromagneteng
dc.subject.othersuperconductivityeng
dc.subject.othersuperconductor/ferromagnet bilayereng
dc.subject.otherthin filmeng
dc.subject.otherXMCDeng
dc.subject.otherAnisotropyeng
dc.subject.otherAspect ratioeng
dc.subject.otherBarium compoundseng
dc.subject.otherCopper compoundseng
dc.subject.otherFerromagnetic materialseng
dc.subject.otherFerromagnetismeng
dc.subject.otherIron alloyseng
dc.subject.otherMagnetseng
dc.subject.otherNickel alloyseng
dc.subject.otherNiobium compoundseng
dc.subject.otherSuperconductivityeng
dc.subject.otherTantalum compoundseng
dc.subject.otherThin filmseng
dc.subject.otherVortex floweng
dc.subject.otherYttrium barium copper oxideseng
dc.subject.otherFerromagnetseng
dc.subject.otherIsotropic propertyeng
dc.subject.otherMagnetic stray fieldseng
dc.subject.otherScanning transmission x ray microscopyeng
dc.subject.otherShielding currentseng
dc.subject.otherSmall aspect ratioeng
dc.subject.otherSuperconductor/ferromagnet bilayereng
dc.subject.otherXMCDeng
dc.subject.otherSuperconducting materialseng
dc.titleMagnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayerseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Simmendinger et al 2019, Magnetically induced anisotropy of flux penetration.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Description:
Collections