A parameterization of the heterogeneous hydrolysis of N2O5 for mass-based aerosol models: Improvement of particulate nitrate prediction

dc.bibliographicCitation.firstPage673
dc.bibliographicCitation.issue2
dc.bibliographicCitation.lastPage689
dc.bibliographicCitation.volume18
dc.contributor.authorChen, Ying
dc.contributor.authorWolke, Ralf
dc.contributor.authorRan, Liang
dc.contributor.authorBirmili, Wolfram
dc.contributor.authorSpindler, Gerald
dc.contributor.authorSchröder, Wolfram
dc.contributor.authorSu, Hang
dc.contributor.authorCheng, Yafang
dc.contributor.authorTegen, Ina
dc.contributor.authorWiedensohler, Alfred
dc.date.accessioned2023-04-27T06:45:30Z
dc.date.available2023-04-27T06:45:30Z
dc.date.issued2018
dc.description.abstractThe heterogeneous hydrolysis of N2O5 on the surface of deliquescent aerosol leads to HNO3 formation and acts as a major sink of NOx in the atmosphere during night-time. The reaction constant of this heterogeneous hydrolysis is determined by temperature (T), relative humidity (RH), aerosol particle composition, and the surface area concentration (S). However, these parameters were not comprehensively considered in the parameterization of the heterogeneous hydrolysis of N2O5 in previous mass-based 3-D aerosol modelling studies. In this investigation, we propose a sophisticated parameterization (NewN2O5) of N2O5 heterogeneous hydrolysis with respect to T, RH, aerosol particle compositions, and S based on laboratory experiments. We evaluated closure between NewN2O5 and a state-of-the-art parameterization based on a sectional aerosol treatment. The comparison showed a good linear relationship (R Combining double low line 0.91) between these two parameterizations. NewN2O5 was incorporated into a 3-D fully online coupled model, COSMO-Muscat, with the mass-based aerosol treatment. As a case study, we used the data from the HOPE Melpitz campaign (10-25 September 2013) to validate model performance. Here, we investigated the improvement of nitrate prediction over western and central Europe. The modelled particulate nitrate mass concentrations ([NO3-]) were validated by filter measurements over Germany (Neuglobsow, Schmücke, Zingst, and Melpitz). The modelled [NO3-] was significantly overestimated for this period by a factor of 5-19, with the corrected NH3 emissions (reduced by 50 %) and the original parameterization of N2O5 heterogeneous hydrolysis. The NewN2O5 significantly reduces the overestimation of [NO3-] by ∼ 35 %. Particularly, the overestimation factor was reduced to approximately 1.4 in our case study (12, 17-18 and 25 September 2013) when [NO3-] was dominated by local chemical formations. In our case, the suppression of organic coating was negligible over western and central Europe, with an influence on [NO3-] of less than 2 % on average and 20 % at the most significant moment. To obtain a significant impact of the organic coating effect, N2O5, SOA, and NH3 need to be present when RH is high and T is low. However, those conditions were rarely fulfilled simultaneously over western and central Europe. Hence, the organic coating effect on the reaction probability of N2O5 may not be as significant as expected over western and central Europe.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/12086
dc.identifier.urihttp://dx.doi.org/10.34657/11120
dc.language.isoeng
dc.publisherKatlenburg-Lindau : EGU
dc.relation.doihttps://doi.org/10.5194/acp-18-673-2018
dc.relation.essn1680-7324
dc.relation.ispartofseriesAtmospheric Chemistry and Physics 18 (2018), Nr. 2eng
dc.rights.licenseCC BY 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0
dc.subjectaerosoleng
dc.subjectatmospheric sinkeng
dc.subjecthydrolysiseng
dc.subjectnitrateeng
dc.subjectnitrogen oxideseng
dc.subjectnumerical modeleng
dc.subjectparameterizationeng
dc.subjectparticulate mattereng
dc.subjectpredictioneng
dc.subjectrelative humidityeng
dc.subjectGermanyeng
dc.subjectWestern Europeeng
dc.subject.ddc550
dc.titleA parameterization of the heterogeneous hydrolysis of N2O5 for mass-based aerosol models: Improvement of particulate nitrate predictioneng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleAtmospheric Chemistry and Physics
tib.accessRightsopenAccess
wgl.contributorTROPOS
wgl.subjectGeowissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acp-18-673-2018.pdf
Size:
2.16 MB
Format:
Adobe Portable Document Format
Description: