Silicon-Nanotube-Mediated Intracellular Delivery Enables Ex Vivo Gene Editing

dc.bibliographicCitation.firstPage2000036eng
dc.bibliographicCitation.issue24eng
dc.bibliographicCitation.journalTitleAdvanced Materialseng
dc.bibliographicCitation.volume32eng
dc.contributor.authorChen, Yaping
dc.contributor.authorAslanoglou, Stella
dc.contributor.authorMurayama, Takahide
dc.contributor.authorGervinskas, Gediminas
dc.contributor.authorFitzgerald, Laura I.
dc.contributor.authorSriram, Sharath
dc.contributor.authorTian, Jie
dc.contributor.authorJohnston, Angus P.R.
dc.contributor.authorMorikawa, Yasuhiro
dc.contributor.authorSuu, Koukou
dc.contributor.authorElnathan, Roey
dc.contributor.authorVoelcker, Nicolas H.
dc.date.accessioned2021-09-01T08:57:29Z
dc.date.available2021-09-01T08:57:29Z
dc.date.issued2020
dc.description.abstractEngineered nano–bio cellular interfaces driven by vertical nanostructured materials are set to spur transformative progress in modulating cellular processes and interrogations. In particular, the intracellular delivery—a core concept in fundamental and translational biomedical research—holds great promise for developing novel cell therapies based on gene modification. This study demonstrates the development of a mechanotransfection platform comprising vertically aligned silicon nanotube (VA-SiNT) arrays for ex vivo gene editing. The internal hollow structure of SiNTs allows effective loading of various biomolecule cargoes; and SiNTs mediate delivery of those cargoes into GPE86 mouse embryonic fibroblasts without compromising their viability. Focused ion beam scanning electron microscopy (FIB-SEM) and confocal microscopy results demonstrate localized membrane invaginations and accumulation of caveolin-1 at the cell–NT interface, suggesting the presence of endocytic pits. Small-molecule inhibition of endocytosis suggests that active endocytic process plays a role in the intracellular delivery of cargo from SiNTs. SiNT-mediated siRNA intracellular delivery shows the capacity to reduce expression levels of F-actin binding protein (Triobp) and alter the cellular morphology of GPE86. Finally, the successful delivery of Cas9 ribonucleoprotein (RNP) to specifically target mouse Hprt gene is achieved. This NT-enhanced molecular delivery platform has strong potential to support gene editing technologies. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6645
dc.identifier.urihttps://doi.org/10.34657/5692
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/adma.202000036
dc.relation.essn1521-4095
dc.relation.issn0935-9648
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc540eng
dc.subject.ddc660eng
dc.subject.otherCas9 RNPeng
dc.subject.othergene editingeng
dc.subject.otherintracellular deliveryeng
dc.subject.othersilicon nanotubeseng
dc.subject.othersiRNA knockdowneng
dc.titleSilicon-Nanotube-Mediated Intracellular Delivery Enables Ex Vivo Gene Editingeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorINMeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adma.202000036.pdf
Size:
4.88 MB
Format:
Adobe Portable Document Format
Description:
Collections