Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets

dc.bibliographicCitation.articleNumber5180
dc.bibliographicCitation.firstPage5180
dc.bibliographicCitation.issue12
dc.bibliographicCitation.journalTitleNanoscale
dc.bibliographicCitation.volume5
dc.contributor.authorBo, Zheng
dc.contributor.authorYang, Yong
dc.contributor.authorChen, Junhong
dc.contributor.authorYu, Kehan
dc.contributor.authorYan, Jianhua
dc.contributor.authorCen, Kefa
dc.date.accessioned2025-03-04T10:43:04Z
dc.date.available2025-03-04T10:43:04Z
dc.date.issued2013
dc.description.abstractVertically oriented graphene (VG) nanosheets have attracted growing interest for a wide range of applications, from energy storage, catalysis and field emission to gas sensing, due to their unique orientation, exposed sharp edges, non-stacking morphology, and huge surface-to-volume ratio. Plasma-enhanced chemical vapor deposition (PECVD) has emerged as a key method for VG synthesis; however, controllable growth of VG with desirable characteristics for specific applications remains a challenge. This paper attempts to summarize the state-of-the-art research on PECVD growth of VG nanosheets to provide guidelines on the design of plasma sources and operation parameters, and to offer a perspective on outstanding challenges that need to be overcome to enable commercial applications of VG. The review starts with an overview of various types of existing PECVD processes for VG growth, and then moves on to research on the influences of feedstock gas, temperature, and pressure on VG growth, substrate pretreatment, the growth of VG patterns on planar substrates, and VG growth on cylindrical and carbon nanotube (CNT) substrates. The review ends with a discussion on challenges and future directions for PECVD growth of VG. © 2013 The Royal Society of Chemistry.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/18755
dc.identifier.urihttps://doi.org/10.34657/17774
dc.language.isoeng
dc.publisherCambridge : RSC Publ.
dc.relation.doihttps://doi.org/10.1039/c3nr33449j
dc.relation.essn2040-3372
dc.relation.issn2040-3364
dc.rights.licenseCC BY 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subject.ddc600
dc.subject.otherGaseseng
dc.subject.otherGraphiteeng
dc.subject.otherHydrocarbonseng
dc.subject.otherMicrowaveseng
dc.subject.otherNanotubes, Carboneng
dc.subject.otherPressureeng
dc.subject.otherTemperatureeng
dc.subject.otherGrapheneeng
dc.subject.otherPlasma enhanced chemical vapor depositioneng
dc.subject.otherSubstrateseng
dc.subject.otherVaporseng
dc.subject.othercarbon nanotubeeng
dc.subject.othergraphiteeng
dc.subject.otherhydrocarboneng
dc.subject.othercarbon nanotubeeng
dc.subject.othergaseng
dc.subject.othergraphiteeng
dc.subject.otherCarbon nanotubes (CNT)eng
dc.subject.otherCommercial applicationseng
dc.subject.otherControllable growtheng
dc.subject.otherGraphene nanosheetseng
dc.subject.otherOperation parameterseng
dc.subject.otherPlanar substrateeng
dc.subject.otherSubstrate pretreatmenteng
dc.subject.otherSurface-to-volume ratioeng
dc.subject.otherchemistryeng
dc.subject.othergaseng
dc.subject.othermicrowave radiationeng
dc.subject.otherpressureeng
dc.subject.otherrevieweng
dc.subject.othertemperatureeng
dc.subject.otherultrastructureeng
dc.subject.otherchemistryeng
dc.subject.othergaseng
dc.subject.otherNanosheetseng
dc.titlePlasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheetseng
dc.typeArticle
dc.typeText
tib.accessRightsopenAccess
wgl.contributorINP
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
c3nr33449j.pdf
Size:
3.12 MB
Format:
Adobe Portable Document Format
Description:
Collections