A physical model for the reverse leakage current in (In,Ga)N/GaN light-emitting diodes based on nanowires

dc.bibliographicCitation.journalTitleJournal of Applied Physicseng
dc.contributor.authorMusolino, M.
dc.contributor.authorTreeck, D.
dc.contributor.authorTahraoui, A.
dc.contributor.authorScarparo, L.
dc.contributor.authorDe Santi, C.
dc.contributor.authorMeneghini, M.
dc.contributor.authorZanoni, E.
dc.contributor.authorGeelhaar, L.
dc.contributor.authorRiechert, H.
dc.date.accessioned2019-03-21T15:00:41Z
dc.date.available2019-06-28T12:39:06Z
dc.date.issued2015
dc.description.abstractWe investigated the origin of the high reverse leakage current in light emitting diodes (LEDs) based on (In,Ga)N/GaN nanowire (NW) ensembles grown by molecular beam epitaxy on Si substrates. To this end, capacitance deep level transient spectroscopy (DLTS) and temperature-dependent current-voltage (I-V) measurements were performed on a fully processed NW-LED. The DLTS measurements reveal the presence of two distinct electron traps with high concentrations in the depletion region of the p-i-n junction. These band gap states are located at energies of 570 ± 20 and 840 ± 30 meV below the conduction band minimum. The physical origin of these deep level states is discussed. The temperature-dependent I-V characteristics, acquired between 83 and 403 K, show that different conduction mechanisms cause the observed leakage current. On the basis of all these results, we developed a quantitative physical model for charge transport in the reverse bias regime. By taking into account the mutual interaction of variable range hopping and electron emission from Coulombic trap states, with the latter being described by phonon-assisted tunnelling and the Poole-Frenkel effect, we can model the experimental I-V curves in the entire range of temperatures with a consistent set of parameters. Our model should be applicable to planar GaN-based LEDs as well. Furthermore, possible approaches to decrease the leakage current in NW-LEDs are proposed.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4187
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttps://arxiv.org/abs/1511.04044
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc530eng
dc.subject.otherEpitaxyeng
dc.subject.otherSemiconductorseng
dc.subject.otherCharge transporteng
dc.subject.otherNanowireseng
dc.subject.otherDeep leveleng
dc.subject.othertransient spectroscopyeng
dc.subject.otherI-V characteristicseng
dc.subject.otherLight emitting diodeseng
dc.subject.otherElectron trapseng
dc.subject.otherElectrical properties and parameterseng
dc.subject.otherSurface collisionseng
dc.titleA physical model for the reverse leakage current in (In,Ga)N/GaN light-emitting diodes based on nanowireseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPDIeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Collections