Spatiotemporal data analysis with chronological networks

dc.bibliographicCitation.firstPage4036
dc.bibliographicCitation.journalTitleNature Communicationseng
dc.bibliographicCitation.volume11
dc.contributor.authorFerreira, Leonardo N.
dc.contributor.authorVega-Oliveros, Didier A.
dc.contributor.authorCotacallapa, Moshé
dc.contributor.authorCardoso, Manoel F.
dc.contributor.authorQuiles, Marcos G.
dc.contributor.authorZhao, Liang
dc.contributor.authorMacau, Elbert E. N.
dc.date.accessioned2022-10-24T07:53:24Z
dc.date.available2022-10-24T07:53:24Z
dc.date.issued2020
dc.description.abstractThe number of spatiotemporal data sets has increased rapidly in the last years, which demands robust and fast methods to extract information from this kind of data. Here, we propose a network-based model, called Chronnet, for spatiotemporal data analysis. The network construction process consists of dividing a geometric space into grid cells represented by nodes connected chronologically. Strong links in the network represent consecutive recurrent events between cells. The chronnet construction process is fast, making the model suitable to process large data sets. Using artificial and real data sets, we show how chronnets can capture data properties beyond simple statistics, like frequent patterns, spatial changes, outliers, and spatiotemporal clusters. Therefore, we conclude that chronnets represent a robust tool for the analysis of spatiotemporal data sets.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10313
dc.identifier.urihttp://dx.doi.org/10.34657/9349
dc.language.isoeng
dc.publisher[London] : Nature Publishing Group UK
dc.relation.doihttps://doi.org/10.1038/s41467-020-17634-2
dc.relation.essn2041-1723
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc500eng
dc.subject.otheranalytical methodeng
dc.subject.otherchronologyeng
dc.subject.otherdata seteng
dc.subject.othermodeleng
dc.subject.otherdata analysiseng
dc.subject.othergrid celleng
dc.subject.otherhuman celleng
dc.titleSpatiotemporal data analysis with chronological networkseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorPIK
wgl.subjectPhysik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-020-17634-2.pdf
Size:
4.28 MB
Format:
Adobe Portable Document Format
Description:
Collections