Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6

dc.bibliographicCitation.firstPage429eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.volume11eng
dc.contributor.authorRolinski, S.
dc.contributor.authorMüller, C.
dc.contributor.authorHeinke, J.
dc.contributor.authorWeindl, I.
dc.contributor.authorBiewald, A.
dc.contributor.authorLeon Bodirsky, B.
dc.contributor.authorBondeau, A.
dc.contributor.authorBoons-Prins, E.R.
dc.contributor.authorBouwman, A.F.
dc.contributor.authorLeffelaar, P.A.
dc.contributor.authorRoller, J.A.T.
dc.contributor.authorSchaphoff, S.
dc.contributor.authorThonicke, K.
dc.date.accessioned2020-07-27T12:26:28Z
dc.date.available2020-07-27T12:26:28Z
dc.date.issued2018
dc.description.abstractGrassland management affects the carbon fluxes of one-third of the global land area and is thus an important factor for the global carbon budget. Nonetheless, this aspect has been largely neglected or underrepresented in global carbon cycle models. We investigate four harvesting schemes for the managed grassland implementation of the dynamic global vegetation model (DGVM) Lund-Potsdam-Jena managed Land (LPJmL) that facilitate a better representation of actual management systems globally. We describe the model implementation and analyze simulation results with respect to harvest, net primary productivity and soil carbon content and by evaluating them against reported grass yields in Europe.We demonstrate the importance of accounting for differences in grassland management by assessing potential livestock grazing densities as well as the impacts of grazing, grazing intensities and mowing systems on soil carbon stocks. Grazing leads to soil carbon losses in polar or arid regions even at moderate livestock densities ( <0.4 livestock units per hectare-LSUha-1) but not in temperate regions even at much higher densities (0.4 to 1.2 LSUha-1). Applying LPJmL with the new grassland management options enables assessments of the global grassland production and its impact on the terrestrial biogeochemical cycles but requires a global data set on current grassland management.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3735
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5106
dc.language.isoengeng
dc.publisherGöttingen : Copernicus GmbHeng
dc.relation.doihttps://doi.org/10.5194/gmd-11-429-2018
dc.relation.ispartofseriesGeoscientific Model Development 11 (2018), Nr. 1eng
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subjectarid regioneng
dc.subjectbiogeochemical cycleeng
dc.subjectcarbon budgeteng
dc.subjectcarbon cycleeng
dc.subjectcarbon fluxeng
dc.subjectcarbon sequestrationeng
dc.subjectecological modelingeng
dc.subjectglobal perspectiveeng
dc.subjectgrasseng
dc.subjectgrasslandeng
dc.subjectnet primary productioneng
dc.subjectsoil carboneng
dc.subjectvegetation covereng
dc.subjectEuropeeng
dc.subject.ddc550eng
dc.titleModeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6eng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleGeoscientific Model Developmenteng
tib.accessRightsopenAccesseng
wgl.contributorPIKeng
wgl.contributorATBeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rolinski et al 2018, Modeling vegetation and carbon dynamics of managed grasslands.pdf
Size:
14.5 MB
Format:
Adobe Portable Document Format
Description: