Andronov-Hopf bifurcation of higher codimensions in a Liènard system
Loading...
Date
2011
Authors
Volume
1634
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract
Consider a polynominal Liènard system depending on three parameters itshape a, b, c and with the following properties: (i) The origin is the unique equilibrium for all parameters. (ii) Ifitshape a crosses zero, then the origin changes its stability, and a limit cycle bifurcates from the euqilibrium. We inverstigate analytically this bifurcation in dependence on the parameters itshape b and itshape c and establish the existence of families of limit cycles of multiplicity one, two and three bifurcating from the origin.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.