Gibbs point processes on path space: Existence, cluster expansion and uniqueness

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2859
dc.contributor.authorZass, Alexander
dc.date.accessioned2022-07-05T14:10:48Z
dc.date.available2022-07-05T14:10:48Z
dc.date.issued2021
dc.description.abstractWe study a class of infinite-dimensional diffusions under Gibbsian interactions, in the context of marked point configurations: The starting points belong to R^d, and the marks are the paths of Langevin diffusions. We use the entropy method to prove existence of an infinite-volume Gibbs point process and use cluster expansion tools to provide an explicit activity domain in which uniqueness holds.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9577
dc.identifier.urihttps://doi.org/10.34657/8615
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2859
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherMarked Gibbs point processeng
dc.subject.otherDLR equationseng
dc.subject.otheruniquenesseng
dc.subject.othercluster expansioneng
dc.subject.otherinfinite-dimensional diffusioneng
dc.titleGibbs point processes on path space: Existence, cluster expansion and uniquenesseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent25 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2859.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format
Description: