Gibbs point processes on path space: Existence, cluster expansion and uniqueness
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2859 | |
dc.contributor.author | Zass, Alexander | |
dc.date.accessioned | 2022-07-05T14:10:48Z | |
dc.date.available | 2022-07-05T14:10:48Z | |
dc.date.issued | 2021 | |
dc.description.abstract | We study a class of infinite-dimensional diffusions under Gibbsian interactions, in the context of marked point configurations: The starting points belong to R^d, and the marks are the paths of Langevin diffusions. We use the entropy method to prove existence of an infinite-volume Gibbs point process and use cluster expansion tools to provide an explicit activity domain in which uniqueness holds. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9577 | |
dc.identifier.uri | https://doi.org/10.34657/8615 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2859 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Marked Gibbs point process | eng |
dc.subject.other | DLR equations | eng |
dc.subject.other | uniqueness | eng |
dc.subject.other | cluster expansion | eng |
dc.subject.other | infinite-dimensional diffusion | eng |
dc.title | Gibbs point processes on path space: Existence, cluster expansion and uniqueness | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 25 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2859.pdf
- Size:
- 1.7 MB
- Format:
- Adobe Portable Document Format
- Description: