Rates of convergence for extremes of geometric random variables and marked point processes

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2099
dc.contributor.authorCipriani, Alessandra
dc.contributor.authorFeidt, Anne
dc.date.available2019-06-28T08:22:23Z
dc.date.issued2015
dc.description.abstractWe use the Stein-Chen method to study the extremal behaviour of univariate and bivariate geometric laws. We obtain a rate for the convergence, to the Gumbel distribution, of the law of the maximum of i.i.d. geometric random variables, and show that convergence is faster when approximating by a discretised Gumbel. We similarly find a rate of convergence for the law of maxima of bivariate Marshall-Olkin geometric random pairs when approximating by a discrete limit law. We introduce marked point processes of exceedances (MPPEs), both with univariate and bivariate Marshall-Olkin geometric variables as marks and determine bounds on the error of the approximation, in an appropriate probability metric, of the law of the MPPE by that of a Poisson process with same mean measure. We then approximate by another Poisson process with an easier-to-use mean measure and estimate the error of this additional approximation. This work contains and extends results contained in the second authors PhD thesis under the supervision of Andrew D. Barbour. The thesis is available at http://arxiv.org/abs/ 1310.2564.
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/3075
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3325
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.issn0946-8633eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.otherStein-Chen methodeng
dc.subject.othermaxima of geometric random variableseng
dc.subject.otherMarshall-Olkin geometric distributioneng
dc.subject.otherPoisson approximationeng
dc.subject.othermarked point process of extremeseng
dc.titleRates of convergence for extremes of geometric random variables and marked point processes
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
868648124.pdf
Size:
404.59 KB
Format:
Adobe Portable Document Format
Description: