Reliable averaging for the primal variable in the Courant FEM and hierarchical error estimators on red-refined meshes
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
A hierarchical a posteriori error estimator for the first-order finite element method (FEM) on a red-refined triangular mesh is presented for the 2D Poisson model problem. Reliability and efficiency with some explicit constant is proved for triangulations with inner angles smaller than or equal to π/2 . The error estimator does not rely on any saturation assumption and is valid even in the pre-asymptotic regime on arbitrarily coarse meshes. The evaluation of the estimator is a simple post-processing of the piecewise linear FEM without any extra solve plus a higher-order approximation term. The results also allows the striking observation that arbitrary local averaging of the primal variable leads to a reliable and efficient error estimation. Several numerical experiments illustrate the performance of the proposed a posteriori error estimator for computational benchmarks.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.