Prediction of first-order martensitic transitions in strained epitaxial films

dc.bibliographicCitation.journalTitleNew Journal of Physicseng
dc.bibliographicCitation.volume17
dc.contributor.authorSchönecke, S.
dc.contributor.authorRichter, M.
dc.contributor.authorKoepernik, K.
dc.contributor.authorEschrig, H.
dc.date.accessioned2018-06-11T16:43:53Z
dc.date.available2019-06-28T12:39:54Z
dc.date.issued2015
dc.description.abstractCoherent epitaxial growth allows us to produce strained crystalline films with structures that are unstable in the bulk. Thereby, the overlayer lattice parameters in the interface plane, (a, b), determine theminimum-energy out-of-plane lattice parameter, cmin (a, b).We showbymeans of density-functional total energy calculations that this dependence can be discontinuous and predict related firstorder phase transitions in strained tetragonal films of the elements V, Nb, Ru, La, Os, and Ir. The abrupt change of cmin can be exploited to switch properties specific to the overlayer material. This is demonstrated for the example of the superconducting critical temperature of a vanadium film which we predict to jump by 20% at a discontinuity of cmin.
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/1635
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4360
dc.language.isoengeng
dc.publisherMilton Park : Taylor & Francis
dc.relation.doihttps://doi.org/10.1088/1367-2630/17/2/023005
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subject.ddc530
dc.subject.otherStructural transitionseng
dc.subject.othercrystallographyeng
dc.subject.othersuperconducting filmseng
dc.subject.othernanoscale materialseng
dc.titlePrediction of first-order martensitic transitions in strained epitaxial films
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schoenecker_2015_New_J._Phys._17_023005.pdf
Size:
845.87 KB
Format:
Adobe Portable Document Format
Description:
Collections