Discrete transparent boundary conditions for the Schrödinger equation on circular domains

Loading...
Thumbnail Image
Date
2008
Volume
1344
Issue
Journal
Series Titel
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

We propose transparent boundary conditions (TBCs) for the time-dependent Schrödinger equation on a circular computational domain. First we derive the two-dimensional discrete TBCs in conjunction with a conservative Crank-Nicolson finite difference scheme. The presented discrete initial boundary-value problem is unconditionally stable and completely reflection-free at the boundary. Then, since the discrete TBCs for the Schrödinger equation with a spatially dependent potential include a convolution w.r.t. time with a weakly decaying kernel, we construct approximate discrete TBCs with a kernel having the form of a finite sum of exponentials, which can be efficiently evaluated by recursion. In numerical tests we finally illustrate the accuracy, stability, and efficiency of the proposed method. As a by-product we also present a new formulation of discrete TBCs for the 1D Schrödinger equation, with convolution coefficients that have better decay properties than those from the literature.

Description
Keywords
Two-dimensional Schrödinger equation, transparent boundary conditions, discrete convolution, sum of exponentials, Pad´e approximations, finite difference schemes
Citation
Arnold, A., Ehrhardt, M., Schulte, M., & Sofronov, I. (2008). Discrete transparent boundary conditions for the Schrödinger equation on circular domains (Vol. 1344). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.