Discrete transparent boundary conditions for the Schrödinger equation on circular domains

Loading...
Thumbnail Image
Date
2008
Volume
1344
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

We propose transparent boundary conditions (TBCs) for the time-dependent Schrödinger equation on a circular computational domain. First we derive the two-dimensional discrete TBCs in conjunction with a conservative Crank-Nicolson finite difference scheme. The presented discrete initial boundary-value problem is unconditionally stable and completely reflection-free at the boundary. Then, since the discrete TBCs for the Schrödinger equation with a spatially dependent potential include a convolution w.r.t. time with a weakly decaying kernel, we construct approximate discrete TBCs with a kernel having the form of a finite sum of exponentials, which can be efficiently evaluated by recursion. In numerical tests we finally illustrate the accuracy, stability, and efficiency of the proposed method. As a by-product we also present a new formulation of discrete TBCs for the 1D Schrödinger equation, with convolution coefficients that have better decay properties than those from the literature.

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.